
The Game of Life

The Game of Life, also known simply as Life, is a cellular automaton devised by the
British mathematician John Horton Conway in 1970. It is a zero-player game, meaning that its
evolution is determined by its initial state, requiring no further input. One interacts with the Game of
Life by creating an initial configuration and observing how it evolves. It is Turing complete and can
simulate a universal constructor or any other Turing machine.

Contents

 Rules

 Origins

 Examples of patterns

 Undecidability

 Self-replication

 Iteration

 Algorithms

 Variations

 Music

 Notable programs

Rules
The universe of the Game of Life is an infinite, two-dimensional orthogonal grid of square cells, each
of which is in one of two possible states, live or dead, (or populated and unpopulated, respectively).
Every cell interacts with its eight neighbours, which are the cells that are horizontally, vertically, or
diagonally adjacent. At each step in time, the following transitions occur:

1. Any live cell with fewer than two live neighbours dies, as if by underpopulation.

2. Any live cell with two or three live neighbours lives on to the next generation.

3. Any live cell with more than three live neighbours dies, as if by overpopulation.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

These rules, which compare the behavior of the automaton to real life, can be condensed into the
following:

1. Any live cell with two or three live neighbours survives.

2. Any dead cell with three live neighbours becomes a live cell.

3. All other live cells die in the next generation. Similarly, all other dead cells stay dead.

The initial pattern constitutes the seed of the system. The first generation is created by applying the
above rules simultaneously to every cell in the seed; births and deaths occur simultaneously, and
the discrete moment at which this happens is sometimes called a tick. Each generation is a pure
function of the preceding one. The rules continue to be applied repeatedly to create further
generations.

https://en.wikipedia.org/wiki/Cellular_automaton
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/John_Horton_Conway
https://en.wikipedia.org/wiki/Zero-player_game
https://en.wikipedia.org/wiki/Turing_complete
https://en.wikipedia.org/wiki/Von_Neumann_universal_constructor
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Orthogonality
https://en.wikipedia.org/wiki/Moore_neighborhood
https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Pure_function

Origins
In late 1940, John von Neumann defined life as a creation (as a being or organism) which can
reproduce itself and simulate a Turing machine. Von Neumann was thinking about an engineering
solution which would use electromagnetic components floating randomly in liquid or gas. This turned
out not to be realistic with the technology available at the time. Stanislaw Ulam invented cellular
automata, which were intended to simulate von Neumann's theoretical electromagnetic
constructions. Ulam discussed using computers to simulate his cellular automata in a two-
dimensional lattice in several papers. In parallel, von Neumann attempted to construct Ulam's
cellular automaton. Although successful, he was busy with other projects and left some details
unfinished. His construction was complicated because it tried to simulate his own engineering
design. Over time, simpler life constructions were provided by other researchers, and published in
papers and books.

Motivated by questions in mathematical logic and in part by work on simulation games by Ulam,
among others, John Conway began doing experiments in 1968 with a variety of different two-
dimensional cellular automaton rules. Conway's initial goal was to define an interesting and
unpredictable cell automaton. For example, he wanted some configurations to last for a long time
before dying and other configurations to go on forever without allowing cycles. It was a significant
challenge and an open problem for years before experts on cellular automata managed to prove
that, indeed, the Game of Life admitted of a configuration which was alive in the sense of satisfying
Von Neumann's two general requirements. While the definitions before the Game of Life were proof-
oriented, Conway's construction aimed at simplicity without a priori providing proof the automaton
was alive.

Conway chose his rules carefully, after considerable experimentation, to meet these criteria:

1. There should be no explosive growth.

2. There should exist small initial patterns with chaotic, unpredictable outcomes.

3. There should be potential for von Neumann universal constructors.

4. The rules should be as simple as possible, whilst adhering to the above constraints.

The game made its first public appearance in the October 1970 issue of Scientific American,
in Martin Gardner's "Mathematical Games" column. Theoretically, the Game of Life has the power of
a universal Turing machine: anything that can be computed algorithmically can be computed within
the Game of Life. Gardner wrote, "Because of Life's analogies with the rise, fall and alterations of a
society of living organisms, it belongs to a growing class of what are called 'simulation games'
(games that resemble real-life processes)."

Since its publication, the Game of Life has attracted much interest because of the surprising ways in
which the patterns can evolve. It provides an example of emergence and self-organization. Scholars
in various fields, such as computer science, physics, biology, biochemistry, economics,
mathematics, philosophy, and generative sciences, have made use of the way that complex patterns
can emerge from the implementation of the game's simple rules. The game can also serve as a
didactic analogy, used to convey the somewhat counter-intuitive notion that design and organization
can spontaneously emerge in the absence of a designer. For example, philosopher Daniel
Dennett has used the analogy of the Game of Life "universe" extensively to illustrate the possible
evolution of complex philosophical constructs, such as consciousness and free will, from the
relatively simple set of deterministic physical laws which might govern our universe.

https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Stanislaw_Ulam
https://en.wikipedia.org/wiki/Cellular_automata
https://en.wikipedia.org/wiki/Cellular_automata
https://en.wikipedia.org/wiki/John_Horton_Conway
https://en.wikipedia.org/wiki/Von_Neumann_universal_constructor
https://en.wikipedia.org/wiki/Scientific_American
https://en.wikipedia.org/wiki/Martin_Gardner
https://en.wikipedia.org/wiki/Mathematical_Games_(column)
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Emergence
https://en.wikipedia.org/wiki/Self-organization
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Biochemistry
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Philosophy
https://en.wikipedia.org/wiki/Generative_science
https://en.wikipedia.org/wiki/Analogy
https://en.wikipedia.org/wiki/Daniel_Dennett
https://en.wikipedia.org/wiki/Daniel_Dennett
https://en.wikipedia.org/wiki/Consciousness
https://en.wikipedia.org/wiki/Free_will

The popularity of the Game of Life was helped by its coming into being at the same time as
increasingly inexpensive computer access. The game could be run for hours on these machines,
which would otherwise have remained unused at night. In this respect, it foreshadowed the later
popularity of computer-generated fractals. For many, the Game of Life was simply a programming
challenge: a fun way to use otherwise wasted CPU cycles. For some, however, the Game of Life
had more philosophical connotations. It developed a cult following through the 1970s and beyond;
current developments have gone so far as to create theoretic emulations of computer systems within
the confines of a Game of Life board.

Examples of patterns
Many different types of patterns occur in the Game of Life, which are classified according to their
behaviour. Common pattern types include: still lifes, which do not change from one generation to the
next; oscillators, which return to their initial state after a finite number of generations;
and spaceships, which translate themselves across the grid.

The earliest interesting patterns in the Game of Life were discovered without the use of computers.
The simplest still lifes and oscillators were discovered while tracking the fates of various small
starting configurations using graph paper, blackboards, and physical game boards, such as those
used in Go. During this early research, Conway discovered that the R-pentomino failed to stabilize in
a small number of generations. In fact, it takes 1103 generations to stabilize, by which time it has a
population of 116 and has generated six escaping gliders; these were the first spaceships ever
discovered.

Frequently occurring examples (in that they emerge frequently from a random starting configuration
of cells) of the three aforementioned pattern types are shown below, with live cells shown in black
and dead cells in white. Period refers to the number of ticks a pattern must iterate through before
returning to its initial configuration.

Still lifes

Block

Bee-

hive

Oscillators

Blinker

(period 2)

Toad

(period 2)

Spaceships

Glider

Light-

weight

spaceship

(LWSS)

https://en.wikipedia.org/wiki/Fractal
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Still_life_(cellular_automaton)
https://en.wikipedia.org/wiki/Oscillator_(cellular_automaton)
https://en.wikipedia.org/wiki/Spaceship_(cellular_automaton)
https://en.wikipedia.org/wiki/Graph_paper
https://en.wikipedia.org/wiki/Blackboard
https://en.wikipedia.org/wiki/Go_(board_game)
https://en.wikipedia.org/wiki/Pentomino
https://en.wikipedia.org/wiki/Glider_(Conway%27s_Life)
https://en.wikipedia.org/wiki/File:Game_of_life_block_with_border.svg
https://en.wikipedia.org/wiki/File:Game_of_life_beehive.svg
https://en.wikipedia.org/wiki/File:Game_of_life_blinker.gif
https://en.wikipedia.org/wiki/File:Game_of_life_toad.gif
https://en.wikipedia.org/wiki/File:Game_of_life_animated_glider.gif
https://en.wikipedia.org/wiki/File:Game_of_life_animated_LWSS.gif

Loaf

Boat

Tub

Beacon

(period 2)

Pulsar

(period 3)

Penta-

decathlon

(period 15)

Middle-

weight

spaceship

(MWSS)

Heavy-

weight

spaceship

(HWSS)

The pulsar is the most common period-3 oscillator. The great majority of naturally occurring
oscillators have a period of 2, like the blinker and the toad, but oscillators of many periods are known
to exist, and oscillators of periods 4, 8, 14, 15, 30, and a few others have been seen to arise from
random initial conditions. Patterns which evolve for long periods before stabilizing are
called Methuselahs, the first-discovered of which was the R-pentomino. Diehard is a pattern that
eventually disappears, rather than stabilizing, after 130 generations, which is conjectured to be
maximal for patterns with seven or fewer cells. Acorn takes 5206 generations to generate 633 cells,
including 13 escaped gliders.

The R-pentomino

Diehard

Acorn

https://en.wikipedia.org/wiki/File:Game_of_life_loaf.svg
https://en.wikipedia.org/wiki/File:Game_of_life_boat.svg
https://en.wikipedia.org/wiki/File:Game_of_life_flower.svg
https://en.wikipedia.org/wiki/File:Game_of_life_beacon.gif
https://en.wikipedia.org/wiki/File:Game_of_life_pulsar.gif
https://en.wikipedia.org/wiki/File:I-Column.gif
https://en.wikipedia.org/wiki/File:Animated_Mwss.gif
https://en.wikipedia.org/wiki/File:Animated_Hwss.gif
https://en.wikipedia.org/wiki/Methuselah_(cellular_automaton)
https://en.wikipedia.org/wiki/File:Game_of_life_fpento.svg
https://en.wikipedia.org/wiki/File:Game_of_life_diehard.svg
https://en.wikipedia.org/wiki/File:Game_of_life_acorn.svg

Conway originally conjectured that no pattern can grow indefinitely—i.e. that for any initial
configuration with a finite number of living cells, the population cannot grow beyond some finite
upper limit. In the game's original appearance in "Mathematical Games", Conway offered a prize of
fifty dollars to the first person who could prove or disprove the conjecture before the end of 1970.
The prize was won in November by a team from the Massachusetts Institute of Technology, led
by Bill Gosper; the "Gosper glider gun" produces its first glider on the 15th generation, and another
glider every 30th generation from then on. For many years, this glider gun was the smallest one
known. In 2015, a gun called the "Simkin glider gun", which releases a glider every 120th generation,
was discovered that has fewer live cells but which is spread out across a larger bounding box at its
extremities.

Gosper glider gun

Simkin glider gun

https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Bill_Gosper
https://en.wikipedia.org/wiki/File:Game_of_life_glider_gun.svg
https://en.wikipedia.org/wiki/File:Game_of_life_Simkin_glider_gun.svg

Smaller patterns were later found that also exhibit infinite growth. All three of the patterns shown
below grow indefinitely. The first two create a single block-laying switch engine: a configuration that
leaves behind two-by-two still life blocks as its translates itself across the game's universe. The third
configuration creates two such patterns. The first has only ten live cells, which has been proven to
be minimal. The second fits in a five-by-five square, and the third is only one cell high.

Later discoveries included other guns, which are stationary, and which produce gliders or other
spaceships; puffer trains, which move along leaving behind a trail of debris; and rakes, which move
and emit spaceships. Gosper also constructed the first pattern with an asymptotically
optimal quadratic growth rate, called a breeder or lobster, which worked by leaving behind a trail of
guns.

It is possible for gliders to interact with other objects in interesting ways. For example, if two gliders
are shot at a block in a specific position, the block will move closer to the source of the gliders. If
three gliders are shot in just the right way, the block will move farther away. This sliding block
memory can be used to simulate a counter. It is possible to construct logic gates such as AND, OR,
and NOT using gliders. It is possible to build a pattern that acts like a finite-state machine connected
to two counters. This has the same computational power as a universal Turing machine, so the
Game of Life is theoretically as powerful as any computer with unlimited memory and no time
constraints; it is Turing complete. In fact, several different programmable computer
architectures have been implemented in the Game of Life, including a pattern that simulates Tetris.

Furthermore, a pattern can contain a collection of guns that fire gliders in such a way as to construct
new objects, including copies of the original pattern. A universal constructor can be built which
contains a Turing complete computer, and which can build many types of complex objects, including
more copies of itself.

In 2018, the first truly elementary knightship, Sir Robin, was discovered by Adam P.
Goucher. A knightship is a spaceship that moves two squares left for every one square it moves
down (like a knight in chess), as opposed to moving orthogonally or along a 45° diagonal. This is the
first new spaceship movement pattern for an elementary spaceship found in forty-eight years.
"Elementary" means that it cannot be decomposed into smaller interacting patterns such as gliders
and still lifes.

https://en.wikipedia.org/wiki/File:Game_of_life_infinite1.svg
https://en.wikipedia.org/wiki/File:Game_of_life_infinite2.svg
https://en.wikipedia.org/wiki/File:Game_of_life_infinite3.svg
https://en.wikipedia.org/wiki/Gun_(cellular_automaton)
https://en.wikipedia.org/wiki/Puffer_train
https://en.wikipedia.org/wiki/Rake_(cellular_automaton)
https://en.wikipedia.org/wiki/Asymptotically_optimal_algorithm
https://en.wikipedia.org/wiki/Asymptotically_optimal_algorithm
https://en.wikipedia.org/wiki/Quadratic_growth
https://en.wikipedia.org/wiki/Breeder_(cellular_automaton)
https://en.wikipedia.org/wiki/Counter_(digital)
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Turing_complete
https://en.wikipedia.org/wiki/Tetris
https://en.wikipedia.org/wiki/Knight_(chess)

Undecidability
Many patterns in the Game of Life eventually become a combination of still lifes, oscillators, and
spaceships; other patterns may be called chaotic. A pattern may stay chaotic for a very long time
until it eventually settles to such a combination.

The Game of Life is undecidable, which means that given an initial pattern and a later pattern, no
algorithm exists that can tell whether the later pattern is ever going to appear. This is a corollary of
the halting problem: the problem of determining whether a given program will finish running or
continue to run forever from an initial input.

Indeed, since the Game of Life includes a pattern that is equivalent to a universal Turing
machine (UTM), this deciding algorithm, if it existed, could be used to solve the halting problem by
taking the initial pattern as the one corresponding to a UTM plus an input, and the later pattern as
the one corresponding to a halting state of the UTM. It also follows that some patterns exist that
remain chaotic forever. If this were not the case, one could progress the game sequentially until a
non-chaotic pattern emerged, then compute whether a later pattern was going to appear.

Self-replication
On May 18, 2010, Andrew J. Wade announced a self-constructing pattern, dubbed "Gemini", that
creates a copy of itself while destroying its parent. This pattern replicates in 34 million generations,
and uses an instruction tape made of gliders oscillating between two stable configurations made of
Chapman–Greene construction arms. These, in turn, create new copies of the pattern, and destroy
the previous copy. Gemini is also a spaceship, and is the first spaceship constructed in the Game of
Life that is an oblique spaceship, which is a spaceship that is neither orthogonal nor purely
diagonal. In December 2015, diagonal versions of the Gemini were built.

On November 23, 2013, Dave Greene built the first replicator in the Game of Life that creates a
complete copy of itself, including the instruction tape.

In October 2018, Adam P. Goucher finished his construction of the 0E0P metacell, a metacell
capable of self-replication. This differed from previous metacells, such as the OTCA metapixel by
Brice Due, which only worked with already constructed copies near them. The 0E0P metacell works
by using construction arms to create copies that simulate the programmed rule. The actual
simulation of the Game of Life or other Moore neighbourhood rules is done by simulating an
equivalent rule using the von Neumann neighbourhood with more states. The name 0E0P is short
for "Zero Encoded by Zero Population", which indicates that instead of a metacell being in an "off"
state simulating empty space, the 0E0P metacell removes itself when the cell enters that state,
leaving a blank space.

https://en.wikipedia.org/wiki/Undecidable_problem
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Replicator_(cellular_automaton)
https://en.wikipedia.org/wiki/Moore_neighborhood
https://en.wikipedia.org/wiki/Von_Neumann_neighborhood

Iteration
From most random initial patterns of living cells on the grid, observers will find the population
constantly changing as the generations tick by. The patterns that emerge from the simple rules may
be considered a form of mathematical beauty. Small isolated subpatterns with no initial symmetry
tend to become symmetrical. Once this happens, the symmetry may increase in richness, but it
cannot be lost unless a nearby subpattern comes close enough to disturb it. In a very few cases, the
society eventually dies out, with all living cells vanishing, though this may not happen for a great
many generations. Most initial patterns eventually burn out, producing either stable figures or
patterns that oscillate forever between two or more states; many also produce one or more gliders or
spaceships that travel indefinitely away from the initial location. Because of the nearest-neighbour
based rules, no information can travel through the grid at a greater rate than one cell per unit time,
so this velocity is said to be the cellular automaton speed of light and denoted c.

Algorithms
Early patterns with unknown futures, such as the R-pentomino, led computer programmers to write
programs to track the evolution of patterns in the Game of Life. Most of the early algorithms were
similar: they represented the patterns as two-dimensional arrays in computer memory. Typically, two
arrays are used: one to hold the current generation, and one to calculate its successor. Often 0 and
1 represent dead and live cells, respectively. A nested for loop considers each element of the current
array in turn, counting the live neighbours of each cell to decide whether the corresponding element
of the successor array should be 0 or 1. The successor array is displayed. For the next iteration, the
arrays swap roles so that the successor array in the last iteration becomes the current array in the
next iteration.

A variety of minor enhancements to this basic scheme are possible, and there are many ways to
save unnecessary computation. A cell that did not change at the last time step, and none of whose
neighbours changed, is guaranteed not to change at the current time step as well, so a program that
keeps track of which areas are active can save time by not updating inactive zones.

The Game of Life on the surface of a trefoil knot

To avoid decisions and branches in the counting loop, the rules can be rearranged from
an egocentric approach of the inner field regarding its neighbours to a scientific observer's viewpoint:
if the sum of all nine fields in a given neighbourhood is three, the inner field state for the next
generation will be life; if the all-field sum is four, the inner field retains its current state; and every
other sum sets the inner field to death.

https://en.wikipedia.org/wiki/Mathematical_beauty
https://en.wikipedia.org/wiki/Speed_of_light_(cellular_automaton)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/File:Trefoil_knot_conways_game_of_life.gif
https://en.wikipedia.org/wiki/Trefoil_knot
https://en.wikipedia.org/wiki/Egocentrism

To save memory, the storage can be reduced to one array plus two line buffers. One line buffer is
used to calculate the successor state for a line, then the second line buffer is used to calculate the
successor state for the next line. The first buffer is then written to its line and freed to hold the
successor state for the third line. If a toroidal array is used, a third buffer is needed so that the
original state of the first line in the array can be saved until the last line is computed.

Glider gun within a toroidal array.

The stream of gliders eventually wraps around and destroys the gun.

Red glider on the square lattice with periodic boundary conditions

In principle, the Game of Life field is infinite, but computers have finite memory. This leads to
problems when the active area encroaches on the border of the array. Programmers have used
several strategies to address these problems. The simplest strategy is to assume that every cell
outside the array is dead. This is easy to program but leads to inaccurate results when the active
area crosses the boundary. A more sophisticated trick is to consider the left and right edges of the
field to be stitched together, and the top and bottom edges also, yielding a toroidal array. The result
is that active areas that move across a field edge reappear at the opposite edge. Inaccuracy can still
result if the pattern grows too large, but there are no pathological edge effects. Techniques of
dynamic storage allocation may also be used, creating ever-larger arrays to hold growing patterns.
The Game of Life on a finite field is sometimes explicitly studied; some implementations, such
as Golly, support a choice of the standard infinite field, a field infinite only in one dimension, or a
finite field, with a choice of topologies such as a cylinder, a torus, or a Möbius strip.

Alternatively, programmers may abandon the notion of representing the Game of Life field with a
two-dimensional array, and use a different data structure, such as a vector of coordinate pairs
representing live cells. This allows the pattern to move about the field unhindered, as long as the
population does not exceed the size of the live-coordinate array. The drawback is that counting live
neighbours becomes a hash-table lookup or search operation, slowing down simulation speed. With
more sophisticated data structures this problem can also be largely solved.

For exploring large patterns at great time depths, sophisticated algorithms such as Hashlife may be
useful. There is also a method for implementation of the Game of Life and other cellular automata
using arbitrary asynchronous updates whilst still exactly emulating the behaviour of the synchronous
game. Source code examples that implement the basic Game of Life scenario in various
programming languages, including C, C++, Java and Python can be found at Rosetta Code.

https://en.wikipedia.org/wiki/Torus
https://en.wikipedia.org/wiki/File:Long_gun.gif
https://en.wikipedia.org/wiki/File:%D0%98%D0%B3%D1%80%D0%B0_%22%D0%96%D0%B8%D0%B7%D0%BD%D1%8C%22.gif
https://en.wikipedia.org/wiki/Torus
https://en.wikipedia.org/wiki/Golly_(program)
https://en.wikipedia.org/wiki/M%C3%B6bius_strip
https://en.wikipedia.org/wiki/Hashlife
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Rosetta_Code

Variations
Main article: Life-like cellular automaton

Since the Game of Life's inception, new, similar cellular automata have been developed. The
standard Game of Life is symbolized as B3/S23. A cell is born if it has exactly three neighbours,
survives if it has two or three living neighbours, and dies otherwise. The first number, or list of
numbers, is what is required for a dead cell to be born. The second set is the requirement for a live
cell to survive to the next generation. Hence B6/S16 means "a cell is born if there are six
neighbours, and lives on if there are either one or six neighbours". Cellular automata on a two-
dimensional grid that can be described in this way are known as Life-like cellular automata. Another
common Life-like automaton, Highlife, is described by the rule B36/S23, because having six
neighbours, in addition to the original game's B3/S23 rule, causes a birth. HighLife is best known for
its frequently occurring replicators.

Additional Life-like cellular automata exist. The vast majority of these 218 different rules produce
universes that are either too chaotic or too desolate to be of interest, but a large subset do display
interesting behavior. A further generalization produces the isotropic rulespace, with 2102 possible
cellular automaton rules (the Game of Life again being one of them). These are rules that use the
same square grid as the Life-like rules and the same eight-cell neighbourhood, and are likewise
invariant under rotation and reflection. However, in isotropic rules, the positions of neighbour cells
relative to each other may be taken into account in determining a cell's future state—not just the total
number of those neighbours.

A sample of a 48-step oscillator along with a 2-step oscillator and a 4-step oscillator from a two-

dimensional hexagonal Game of Life (rule H:B2/S34)

Some variations on the Game of Life modify the geometry of the universe as well as the rule. The
above variations can be thought of as a two-dimensional square, because the world is two-
dimensional and laid out in a square grid. One-dimensional square variations, known as elementary
cellular automata, and three-dimensional square variations have been developed, as have two-
dimensional hexagonal and triangular variations. A variant using aperiodic tiling grids has also been
made.

Conway's rules may also be generalized such that instead of two states, live and dead, there are
three or more. State transitions are then determined either by a weighting system or by a table
specifying separate transition rules for each state; for example, Mirek's Cellebration's multi-coloured
Rules Table and Weighted Life rule families each include sample rules equivalent to the Game of
Life.

https://en.wikipedia.org/wiki/Life-like_cellular_automaton
https://en.wikipedia.org/wiki/Life-like_cellular_automaton
https://en.wikipedia.org/wiki/Highlife_(cellular_automaton)
https://en.wikipedia.org/wiki/File:Oscillator.gif
https://en.wikipedia.org/wiki/Elementary_cellular_automaton
https://en.wikipedia.org/wiki/Elementary_cellular_automaton
https://en.wikipedia.org/wiki/Regular_tiling
https://en.wikipedia.org/wiki/Aperiodic_tiling

Patterns relating to fractals and fractal systems may also be observed in certain Life-like variations.
For example, the automaton B1/S12 generates four very close approximations to the Sierpinski
triangle when applied to a single live cell. The Sierpinski triangle can also be observed in the Game
of Life by examining the long-term growth of a long single-cell-thick line of live cells, as well as in
Highlife, Seeds (B2/S), and Wolfram's Rule 90.

Immigration is a variation that is very similar to the Game of Life, except that there are two on states,
often expressed as two different colours. Whenever a new cell is born, it takes on the on state that is
the majority in the three cells that gave it birth. This feature can be used to examine interactions
between spaceships and other objects within the game. Another similar variation, called QuadLife,
involves four different on states. When a new cell is born from three different on neighbours, it takes
the fourth value, and otherwise, like Immigration, it takes the majority value. Except for the variation
among on cells, both of these variations act identically to the Game of Life.

Music
Various musical composition techniques use the Game of Life, especially in MIDI sequencing. A
variety of programs exist for creating sound from patterns generated in the Game of Life.

Notable programs

The 6366548773467669985195496000th (6×1027) generation of a Turing machine, made in the game

of Life, computed in less than 30 seconds on an Intel Core Duo 2 GHz CPU using Golly

in Hashlife mode

https://en.wikipedia.org/wiki/Sierpinski_triangle
https://en.wikipedia.org/wiki/Sierpinski_triangle
https://en.wikipedia.org/wiki/Seeds_(cellular_automaton)
https://en.wikipedia.org/wiki/Rule_90
https://en.wikipedia.org/wiki/Spaceship_(cellular_automaton)
https://en.wikipedia.org/wiki/MIDI
https://en.wikipedia.org/wiki/File:Turing_Machine_in_Golly.png
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Hashlife

Computers have been used to follow Game of Life configurations since it was first publicized. When
John Conway was first investigating how various starting configurations developed, he tracked them
by hand using a go board with its black and white stones. This was tedious and prone to errors.
While Conway was investigating the R-pentomino, John Francis, an undergraduate student at
The University of Cambridge, wrote a program (for an IBM System/360 mainframe at the nearby
Institute of Theoretical Astronomy) to check Conway's results. This program showed that the
configuration had not reached a stable state after 1,000 generations.

The first interactive Game of Life program was written in an early version of ALGOL 68C for
the PDP-7 by M. J. T. Guy and S. R. Bourne. The results were published in the October 1970 issue
of Scientific American, along with the statement: "Without its help, some discoveries about the game
would have been difficult to make."

Two early implementations of the Game of Life on home computers were by Malcolm Banthorpe
written in BBC BASIC. The first was in the January 1984 issue of Acorn User magazine, and
Banthorpe followed this with a three-dimensional version in the May 1984 issue. Susan Stepney,
Professor of Computer Science at the University of York, followed this up in 1988 with Life on the
Line, a program that generated one-dimensional cellular automata.

There are now thousands of Game of Life programs online, so a full list will not be provided here.
The following is a small selection of programs with some special claim to notability, such as
popularity or unusual features. Most of these programs incorporate a graphical user interface for
pattern editing and simulation, the capability for simulating multiple rules including the Game of Life,
and a large library of interesting patterns in the Game of Life and other cellular automaton rules.

 Golly is a cross-platform (Windows, Macintosh, Linux, iOS, and Android) open-source
simulation system for the Game of Life and other cellular automata (including all Life-like cellular
automata, the Generations family of cellular automata from Mirek's Cellebration, and John von
Neumann's 29-state cellular automaton) by Andrew Trevorrow and Tomas Rokicki. It includes
the Hashlife algorithm for extremely fast generation, and Lua or Python scriptability for both
editing and simulation.

 Mirek's Cellebration is a freeware one- and two-dimensional cellular automata viewer,
explorer, and editor for Windows. It includes powerful facilities for simulating and viewing a wide
variety of cellular automaton rules, including the Game of Life, and a scriptable editor.

 Xlife is a cellular-automaton laboratory by Jon Bennett. The standard UNIX X11 Game of Life
simulation application for a long time, it has also been ported to Windows. It can handle cellular
automaton rules with the same neighbourhood as the Game of Life, and up to eight possible
states per cell.

https://en.wikipedia.org/wiki/Go_(game)
https://en.wikipedia.org/wiki/University_of_Cambridge
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/ALGOL_68C
https://en.wikipedia.org/wiki/PDP-7
https://en.wikipedia.org/wiki/Michael_Guy_(computer_scientist)
https://en.wikipedia.org/wiki/Stephen_R._Bourne
https://en.wikipedia.org/wiki/Scientific_American
https://en.wikipedia.org/wiki/BBC_BASIC
https://en.wikipedia.org/wiki/Acorn_User
https://en.wikipedia.org/wiki/University_of_York
https://en.wikipedia.org/wiki/Golly_(program)
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)

