
Microsoft
MACRO-8O

ASSEMBLER
CP/M<a Version

Software Reference
Manua!

for HEATH/ZEN!TH 8-bit digita! computer systems

Copyright (c) 1961
Heath Company

R/g/jfs Reserved

H E A T H C O M P A N Y
B E N T O N H A R B O R . MtCHtGAN 4 9 0 2 2

CP/M is a registered trademark of Digita) Research

595 -2666 -02
Printed in the

United States of America

Technical consultation is available /or any problems you may en-
counter in verifying proper operation of this product. We are sorry,
but we are not able to evaluate or assist in the debugging of any
programs you may develop with this product. For technical assis-
tance, call:

(616) 982-3884 Application Software
(616) 982-3860 Operating Systems/Language Software

Consultation is available between 8;00 am and 4;30 pm (Eastern), on
normal business days.

Zenith Data Systems
Software Consultation
Hilltop Road
St. /oseph, Ml 49085

Por t ions of this M a n u a l have b e e n adapted from Microsof t publ i ca t ions
d o c u m e n t s .

C O P Y R I G H T @ by Microsof t , 1 9 7 9 , al l r ights reserved.

Table of Contents

Chapter One — Using the MACRO-8O Assembler

Overview 1*1
Format of MACRO-8O Source Files 1-2

Statements 1*3
Symbols 1-4
Numeric Constants 1*4
Strings 1-4

Format of Commands 1-5
MACRO-80 Switches 1-7
Symbol Table Listing 1-10

MACRO-8O Errors 1-11
Error Codes 1-11
Error Mes sages 1 -12

Chapter Two — Expression Evaluation

Overview 2-1
Arithmetic and Logical Operators 2-2
Modes 2-3

Externals 2-4
Opcodes as Operands 2-4

Chapter Three — Pseudo-Opcodes/Assembler Directives

Overview 3-1
Pseudo-Opcodes 3-2
Conditional Pseudo-Operations 3-9
Listing Control Pseudo-Operations 3-10
Relocatable Pseudo-Operations 3-13

ORG Pseudo-Op 3-14
Relocation Before Loading 3-15

Chapter Four — Macros and Block Pseudo-Operations

Overview 4-1
Macros and Block Pseudo-Operations 4-2

Terms 4-2
Special Macro Operators and Forms 4-7
Using Z80 Pseudo-Ops ^ 4-10

Chapter Five — Index

Using the MACRO-8O Assembter

Chapter One

Using the MACRO-8O Assembler

OVERVIEW

The MACRO-80 Assembler is an 8080/Z80 Assembler with complete facilities
for macro development.

In order to use the Assembler, a source program must first be written using an
editor, such as ED. A MACRO-80 source program is composed of a series of
statements. The format of each statement must follow a predefined format.

After the source program has been written, it must be assembled using the Macro
Assembler. The result of this process will be a relocatable module. This module
must then be linked using the Linking Loader. (See Section 3, "LINK-80", for
information on the Linking Loader.) After the relocatable module has been
linked, it can be executed.

In order to provide the Assembler with the information it needs to successfully
assemble a source program, a command string must be input. This command
string tells the Assembler where to find the source program, where to put the
relocatable module and where to write the listing.

There are also several switches which can be set in the command string. Some of
these switches are used to control the format of the listing file. A switch can also
be set to allow the Assembler to assemble Z80 mnemonics.

FORMAT OF MACRO-8Q SOURCE FILES

In general, MACRO-8O accepts a source file that is almost identical to source files
for INTEL-compatible assemblers. Input source lines up to 132 characters in
length are allowed.

MACRO-8O preserves lower-case letters in quoted strings and comments. All
symbols, opcodes and pseudo-opcodes typed in as lower-case will be converted
to upper-case.

Using the MACRO-8O Assembter

Statements

Source files input to MACRO-80 consist of statements of the form:

[label: [:]] [operator] [arguments] [;commentl

It is not necessary that statements begin in column one. Multiple blanks or tabs
may be used to improve readability.

If a label is present, it is the first item in the statement and is immediately
followed by a colon (:). If it is followed by two colons, it is declared as PUBLIC.
Therefore:

F 0 0 : : RET

is equivalent to:

PUBLIC F00

F 0 0 : RET

The next item after the label (or the first item on the line if no label is present) is
an operator. An operator may bean opcode (8080 orZ80 mnenomic), pseudo-op,
macro call, or expression.

The evaluation order is as follows:

1. Macro call
2. Opcode/Pseudo-operation
3. Expression

Instead of flagging an expression as an error, the Assembler treats it as if it were a
DB statement. The arguments following the operator will, of course, vary in form
according to the operator.

A comment always begins with a semicolon and ends with a carriage return. A
comment may be a line by itself or it may be appended to a line that contains a
statement. Extended comments can be entered using the .COMMENT operation.

Symbols

MACRO-8O symbols may be of any length. However, only the first six characters
are significant. The following characters are legal in a symbol:

A-Z 0-9 $. ? g

The underline character is also legal in a symbol. A symbol may not start with a
numeric digit. Lower case symbols are translated to upper case. If a symbol
reference is followed by # # it is declared external.

Numeric Constants

The default base for numeric constants is decimal. This may be changed by the
.RADIX pseudo-op. Any base from 2 (binary) to 16 (hexadecimal) may be
selected. When the base is greater than 10, A-F are the digits following 9. !f the
first digit of the number is not numeric (i.e. A-F), the number must be preceded
by a zero.

Numbers are 16-bit unsigned quantities. A number is always evaluated in the
current radix unless one of the following special notations is used:

nnnnB Binary
nnnnD Decimal
nnnnO Octal
nnnnQ Octal
nnnnH Hexadecimal
X'nnnn' Hexadecimal

Overflow of a number beyond two bytes is ignored and the result is the low order
16-bits.

Strings

A string is comprised of zero or more characters delimited by quotation marks.
Either single or double quotes may be used as string delimiters. The delimiter
quotes may be used as characters if they appear twice for every character occur-
ance desired. If there are zero characters between the delimiters, the string is a
null string.

Using the MACRO-8O Assembter

FORMAT OF COMMANDS

To run MACRO-8O, type M80 followed by a carriage return. MACRO-80 will
return the prompt "* " , indicating it is ready to accept commands. The format of a
MACRO-8O command string is:

obiprog-dev:mename.ext,Hst-dev:Hiename.ext=source-dev:Hiename.ext

Where:

objprog-dev: The device on which the object program is to be written.

list-dev: The device on which the program listing is written.

source-dev: The device from which the source-program input to MACRO-80 is
obtained. If a device name is omitted, it defaults to the currently
selected drive.

Hlename.ext The file name and file name extension of the object program file,
the listing file, and the source file. If the file name extensions are
omitted, the the operating system will insert the default exten-
sions.

The default file name extensions are:

source file .MAC
relocatable object file .REL
listing file .PRN
cross reference file .CRF

1 - 6 CHAPTER ONE

Either the object file or the listing file or both may be omitted. If neither a listing
file nor an object file is desired, place only a comma to the left of the equal sign. If
the names of the object file and the listing file are omitted, the default is the name
of the source file.

Examples:

[NOTE: The asterisk represents the prompt from the Assembter.)

*EXP.REL.EXP.PRN=EXP.MAC Assemble the program EXP.MAC
and place the object file in EXP.REL
and the list file in EXP.PRN.

*-EXP Assemble the program EXP.MAC
and place the object file in EXP.REL.

*. LST: -Exp Assemble the program EXP.MAC,
place the object file in EXP.REL and
list on the device LST:.

*SMALL.TTY:=TEST Assemble the program TEST.MAC,
place the object file in SMALL.REL
and list on TTY:.

Using the MACRO-8O Assembter

MACRO-8O Switches

A number of different switches may be given in the MACRO-80 command string
that will affect the format of the listing file. Each switch must be preceded by a
slash (/):

Switch Action

0 Print all listing addresses, etc. in octal.

H Print all listing addresses, etc. in hexadecimal. (Default)

R Force generation of an object file.

L Force generation of a listing file.

C Force generation of a cross reference file. (See Page 1-11, 'Cross-
Reference Facility".)

Z Assemble Z80 (Zilog format) mnemonics.

1 Assemble 8080 mnemonics. (Default)

P Each /P allocates an extra 256 bytes of stack space for use during
assembly. Use /P if stack overflow errors occur during assembly.
Otherwise, it is not needed.

Switch Action

/M Initialize Block Data Areas.

If the programmer wants the area that is defined by the DS (Define
Space) pseudo-op initialized to zeros, then the programmer
should use the /M switch in the command line. Otherwise, the
space is not guaranteed to contain zeros. That is, DS does not
automatically initialize the space to zeros.

/X The presence or absence of /X in the command line sets the initial
current mode and the initial value of the default for listing or
suppressing lines in false conditional blocks. /X sets the current
mode and initial value of default to not-to-list. No /X sets current
mode and initial value of default to list. Current mode determines
whether false conditionals will be listed or suppressed.

The initial value of the default is used with the .TFCOND
pseudo-op so that .TFCOND is independent of .SFCOND and
.LFCOND. If the program contains .SFCOND or .LFCOND, /X has
no effect after .SFCOND or .LFCOND is encountered until a
.TFCOND is encountered in the file. So /X has an effect only when
used with a file that contains no conditional listing pseudo-ops or
when used with .TFCOND.

Using the MACRO-8O Assembter

The following chart illustrates the effects of the three pseudo-ops when encoun-
tered under /X and under no /X.

PSEUDO-OP NO /X /X

(none) ON OFF

.SFCOND OFF OFF

.LFCOND ON ON

.TFCOND OFF ON

.TFCOND ON OFF

.SFCOND OFF OFF

.TFCOND OFF ON

.TFCOND ON OFF

.TFCOND OFF ON

Examples:

(NOTE: The asterisk represents the prompt from the Assembter.)

*=TEST/L Compile TEST.MAC with object file TEST.REL and
listing file TEST.PRN

*LAST.LAST/C=M0D1 Compile MODI.MAC with object file LAST.REL and
cross reference file LAST.CRF for use with CREF-80

Symbol Table Listing

In the symbol table listing, all the macro names in the program are listed
alphabetically, followed by all the symbols in the program, listed alphabetically.
After each symbol, a tab is printed, followed by the value of the symbol. If the
symbol is Public, an I is printed immediately after the value. The next character
printed will be one of the following:

Character Definition

U Undefined symbol.

C COMMON block name. (The "value" of the COMMON block is
its length (number of bytes) in hexadecimal or octal.)

* External symbol.

<space> Absolute value.

' Program Relative value.

" Data Relative value.

! COMMON Relative value.

Using the MACRO-8O Assembter

MACRO-8O ERROR MESSAGES

MACRO-80 errors are indicated by a one-character flag in column one of the
listing file. If a listing file is not being printed on the terminal, each erroneous
line is also printed or displayed on the terminal.

Error Codes

A Argument error —
Argument to pseudo-op is not in correct format or is out of range
(.PAGE 1; RADIX 1; PUBLIC 1; STAX H; MOV M ,̂N; INX C).

C Conditional nesting error —
ELSE without IF, ENDIF without IF, two ELSEs on one IF.

D Double Defined symbol —
Reference to a symbol which is multiply defined.

E External error —
Use of an external illegal in context (e.g., FOO SET
NAME ; MVI A,2-NAME).

M Multiply Defined symbol —
Definition of a symbol which is multiply defined.

N Number error —
Error in a number, usually a bad digit (e.g., 8Q).

O Bad opcode or objectionable syntax —
ENDM, LOCAL outside a block; SET, EQU or MACRO without a
name; bad syntax in an opcode (MOV A:); or bad syntax in an
expression (mismatched parenthesis, quotes, consecutive
operators, etc.).

P Phase error —
Value of a label or EQU name is different on pass 2.

Q Questionable —
Usually means a line is not terminated properly. This is a warning
error (e.g. MOV A,B,).

R Relocation —
IHegal use of relocation in expression, such asabs-rel. Data, code
and COMMON areas are relocatable.

U Undefined symbol —
A symbol referenced in an expression is not defined. (For certain
pseudo-ops, a V error is printed on pass 1 and a U on pass 2.)

V Value error —
On pass 1 a pseudo-op which must have its value known on pass 1
(e.g., .RADIX, .PAGE, DS, IF, IFE, etc.), has a value which is
undefined later in the program, a U error will not appear on the
pass 2 listing.

Error Messages:

No end statement encountered on input file'
No END statement: either it is missing or it is not parsed due to being in
a false conditional, unterminated IRP/IRPC/REPT block or terminated
macro.

Unterminated conditional'
At least one conditional is unterminated at the end of the file.

Unterminated REPT/IRP/IRPC/MACRO'
At least one block is unterminated.

[x x] [No] Fatal error(s) [,xx warnings]
The number of fatal errors and warnings. The message is listed on the
console and in the list file.

Expression Evaluation

Chapter Two

Expression Evaluation

OVERVIEW

In most cases, the operand field of a given opcode may be coded as an operand
expression. Such expression is a string of integers, symbols and characters. This
character string is combined using certain operators.

The symbols used in the expression can be expressed in several modes. A symbol
can also be classified as either external or not external.

Additionally, 8080 opcodes can be used as valid one-byte operands.

CHAPTER TWO

ARITHMETIC AND LOGICAL OPERATORS

The following operators are allowed in expressions and are listed in descending
order of precedence.

NUL

LOW, HIGH

*, /, MOD, SHR, SHL

Unary Minus

+ ,

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

Parentheses are used to change the order of precedence. During evaluation of an
expression, as soon as a new operator is encountered that has precedence less
than or equal to the last operator encountered, all operations up to the new
operator are performed. That is, subexpressions involving operators of higher
precedence are computed first.

All operators except" + " , " — ", " * " , " / " must be separated from their operands by
at least one space.

The byte isolation operators (HIGH, LOW) isolate the high- or low-order eight
bits of an Absolute 16-bit value. If a relocatable value is supplied as an operand,
HIGH and LOW will treat it as if it were relative to location zero.

Expression Evatuation

MODES

All symbols used as operands in expressions are in one of the following modes:

Absolute
Data Relative
Program (Code) Relative
COMMON

Symbols assembled under the ASEG, CSEG (default), or DSEG pseudo-ops are in
Absolute, Code Relative or Data Relative mode respectively.

The number of COMMON modes in a program is determined by the number of
COMMON blocks that have been named with the COMMON pseudo-op. Two
COMMON symbols are not in the same mode unless they are in the same
COMMON block.

In any operation other than addition or subtraction, the mode of both operands
must be Absolute.

If the operation is addition, the following rules apply:

1. At least one of the operands must be Absolute.

2. Absolute + <mode> = <mode>

If the operation is subtraction, the following rules apply:

1. <mode> - Absolute = <mode>

2. <mode> - <mode> = Absolute

where the two <mode>s are the same.

Each intermediate step in the evaluation of an expression must conform to the
above rules for modes, or an error will be generated. For example, if FOO, BAZ
and ZAZ are three Program Relative symbols, the expression:

FOO + BAZ - ZAZ

will generate an R error because the first step (FOO + BAZ) adds two relocatable
values. (One of the values must be Absolute.)

CHAPTER TWO

This problem can always be fixed by inserting parentheses.

FOO + (BAZ- ZAZ)

is iegai because the first step (BAZ - ZAZ) generates an Absolute value that is
then added to the Program Relative value, FOO.

Externals

Aside from its classification by mode, a symbol is either External or not External.
An External value must be assembled into a two-byte field. (Single-byte Exter-
nals are not supported.)

The following rules apply to the use of Externals in expressions:

1. Externals are legal only in addition and subtraction.

2. If an External symbol is used in an expression, the result of the
expression is always External.

3. When the operation is addition, either operand (but not both) may be
External.

4. When the operation is subtraction, only the first operand may be
External.

Opcodes as Operands

8080 opcodes are valid one-byte operands. Note that only the first byte is a valid
operand.

For example:

MVI A.(JMP)
MVI B,(RNZ)
MVI C.MOV A,B

Errors will be generated if more than one byte is included in the operand — such
as (CPI 5), (LXI B,LABEL1) or (JMP LABEL2).

Opcodes used as one-byte operands need not be enclosed in parentheses.

NOTE: Opcodes are not valid operands in Z80 mode.

Pseudo-Opcodes/Assembier Directives 3-13

Chapter Three

Pseudo-Opcodes/Assembler Directives

Overview

Within the Macro-80 Assembler there exists a set of instructions known as
pseudo-opcodes or assembler directives. These instructions represent com-
mands to the Assembler. They are called pseudo because although they are
coded into the source program, they are not translated as instructions.

The following chapter explains the form and usage of the available pseudo-
opcodes.

3-12 CHAPTER THREE

PSEUDO-OPCODES

ASEG

ASEG

ASEG sets the location counter to an absolute segment of memory. The location
of the absolute counter wiil be that of the last ASEG (default is 0), unless an ORG
is done after the ASEG to change the location. The effect of ASEG is also achieved
by using the code segment (CSEG) pseudo operation and the /P switch in
L1NK-80.

COMMON

COMMON / c b l o c k name>/

COMMON sets the location counter to the selected common block in memory.
The location is always the initial address of the common area so that compatibil-
ity with the FORTRAN COMMON statement is maintained. If cblock name> is
omitted or consists of spaces, it is considered to be blank common.

CSEG

CSEG

CSEG sets the location counter to the code relative segment of memory. The
location will be that of the last CSEG (default is 0), unless an ORG is done after the
CSEG to change the location. CSEG is the default condition of the assembler.

Pseudo-Opcodes/Assembier Directives 3-13

Define Byte

DB < e x p > [, < e x p > . . .]

DB <str ing>[<str ing>. . .]

The arguments to DB are either expressions or strings. DB stores the values of the
expressions or the characters of the strings in successive memory locations
beginning with the current location counter.

Expressions must evaluate to one byte. (If the high byte of the result is 0 or 255, no
error is given; otherwise, an A error results.)

Strings of three or more characters may not be used in expressions (i.e., they must
be immediately followed by a comma or the end of the line). The characters in a
string are stored in the order of appearance, each as a one-byte value with the
high order bit set to zero.

Example:

0000' 41 42 DB 'AB'
0002' 42 DB 'AB' AND 0FFH
0003' 41 42 43 DB 'ABC'

Define Character

DC <string>

DC stores the characters in <string> in successive memory locations beginning
with the current location counter. As with DB, characters are stored in order of
appearance, each as a one-byte value with the high order bit set to zero. However,
DC stores the last character of the string with the high order bit set to one.

An error will result if the argument to DC is a null string.

Define Space

DS <exp>

DS reserves an area of memory. The value of <exp> gives the number of bytes to
be allocated. All names used i n < e x p > must be previously defined (i.e., all names
known at that point on pass 1).

Otherwise, a V error is generated during pass 1 and a U error may be generated
during pass 2. If a U error is not generated during pass 2, a phase error will
probably be generated because the DS generated no code on pass 1.

3-12 CHAPTER THREE

DSEG

DSEG

DSEG sets the location counter to the Data Relative segment of memory. The
location of the data relative counter will be that of the last DSEG (default is 0),
unless an ORG is done after the DSEG to change the location.

Define Word

DW <exp> [, < e x p > . . .]

DW stores the values of the expressions in successive memory locations begin-
ning with the current location counter. Expressions are evaluated as 2-byte
(word) values.

END

END [< e x p >]

The END statement specifies the end of the program. If <exp> is present, it is the
start address of the program. If <exp> is not present, then no start address is
passed to LINK-80 for that program.

ENTRY/PUBLIC

ENTRY <name> [, <name> . .]

PUBLIC < n a m e > [, < n a m e > . . .]

ENTRY or PUBLIC declares each name in the list as internal and therefore
available for use by this program and other programs to be loaded concurrently.
AH of the names in the list must be defined in the current program or a U error
results. An M error is generated if the name is an external name or common-
blockname.

EQU

<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp> is external, an error is
generated. If <name> already has a value other than <exp>, an M error is
generated.

Pseudo-Opcodes/Assembier Directives 3-13

EXT/EXTRN

EXT <name> [, <name> . . .]

EXTRN <name> [, <name> . .]

EXT or EXTRN declares that the name(s) in the list are external (i.e., defined in a
different program). If any item in the list references a name that is defined in the
current program, an M error results. A reference to a name where the name is
followed immediately by two pound signs (e.g., N A M E # #) also declares the
name as external.

INCLUDE

INCLUDE <filename>

The INCLUDE pseudo-op assembles source statements from an alternate source
file into the current source file. Use of INCLUDE eliminates the need to repeat an
often-used sequence of statements in the current source file. The pseudo-ops
INCLUDE, $INCLUDE and MACLIB are synonymous.

<filename> is any valid specification, as determined by the operating system.
Defaults for filename extensions and device names are the same as those in a
MACRO-8O command line.

The INCLUDE file is opened and assembled into the current source file im-
mediately following the INCLUDE statement. When end-of-file is reached, as-
sembly resumes with the statement following INCLUDE.

On a MACRO-8O listing, a plus sign is printed between the assembled code and
the source line on each line assembled from an INCLUDE file.

Nested INCLUDES are not allowed. If encountered, they will result in an objec-
tionable syntax error O'.

The file specified in the operand field must exist. If the file is not found, the error
V' (value error) is given, and the INCLUDE is ignored.

3-12 CHAPTER THREE

NAME

NAME ('modname')

NAME defines a name for the module. Only the first six characters are significant
in a module name. A module name may also be defined with the TITLE pseudo-
op. In the absence of both the NAME and TITLE pseudo-ops, the module name is
created from the source file name.

Define Origin

ORG <exp>

The location counter is set to the value of <exp> and the Assembler assigns
generated code starting with that value. All names used in <exp> must be known
on pass 1, and the value must either be absolute or in the same area as the location
counter.

PAGE

PAGE [< e x p >]

PAGE causes the Assembler to start a new output page. The value of <exp>, if
included, becomes the new page size (measured in lines per page) and must be in
the range 10 to 255. The default page size is 50 lines per page. The Assembler
puts a form feed character in the listing file at the end of a page.

SET

<name> SET <exp>

SET is the same as EQU, except no error is generated if <name> is already
defined.

SUBTTL

SUBTTL <text>

SUBTTL specifies a subtitle to be listed on the line after the title on each page
heading. <text> is truncated after 60 characters. Any number of SUBTTLs may be
given in a program.

Pseudo-Opcodes/Assembier Directives 3-13

TITLE

TITLE <text>

TITLE specifies a title to be listed on the first line of each page. If more than one
TITLE is given, a Q error results. The first six characters of the title are used as the
module name unless a NAME pseudo operation is used. If neither a NAME or
TITLE pseudo-op is used, the module name is created from the source file name.

COMMENT

.COMMENT < d e l i m x t e x t x d e l i m >

The first non-blank character encountered after .COMMENT is the delimiter.
The following <text> comprises a comment block which continues until the next
occurrence of <delimiter> is encountered. For example, using an asterisk as the
delimiter, the format of the comment block would be:

.COMMENT *
any amount of text entered

here as the comment block

;return to normal mode

.PRINTX

PRINTX < d e l i m x t e x t x d e l i m >

The first non-blank character encountered after .PRINTX is the delimiter. The
following text is listed on the terminal during assembly until another occurrence
of the delimiter is encountered.

.PRINTX is useful for displaying progress through a long assembly or for dis-
playing the value of conditional assembly switches.

For example:

IF CP/M

.PRINTX /CP/M version

ENDIF

.PRINTX will output on both passes. If only one printout is desired, use the IF l or
IF2 pseudo-op.

3-12 CHAPTER THREE

RADIX

RADIX <exp>

The default base (or radix) for all constants is decimal. The RADIX statement
allows the default radix to be changed to any base in the range 2 to 16.

For example:

LXI H.OFFH
RADIX 16

LXI H,OFF

The two LXIs in the example are identical. The <exp> in a RADIX statement is
always in decimal radix, regardless of the current radix.

REQUEST

.REQUEST <filename> [, <f i lename>. . .]

.REQUEST sends a request to the LINK-80 Loader to search the file names in the
list for undefined globais before searching the FORTRAN library. The file names
in the list should be in the form of legal MACRO-8O symbols. They should not
include file name extensions or disk specifications. The LINK-80 loader will
supply the default extension .REL and will assume the default drive.

.Z80

.Z80 enables the Assembler to accept Z80 opcodes. Z80 mode may also be set by
appending the /Z switch to the MACRO-80 command string.

.8080

.8080 enables the Assembler to accept 8080 opcodes. This is the default condi-
tion. 8080 mode may also be set by appending the /I switch to the MACRO-80
command string.

Pseudo-Opcodes/Assembier Directives 3-13

CONDITIONAL PSEUDO OPERATIONS

The conditional pseudo-operations are:

IF/IFT <exp>

IFE/IFF <exp>

IFl

IF2

IFDEF <symbol>

IFNDEF <symboi>

IFB <arg>

IFNB <arg>

IFIDN < a r g l > , <arg2>

IFDIF < a r g l > , <arg2>

True if <exp> is not 0.

True if <exp> is 0.

True if pass 1.

True if pass 2.

True if <symbol> is defined or has been declared
External.

True if <symbol> is undefined or not declared Ex-
ternal.

True if <arg> is blank. The angle brackets around
<arg> are required.

True if <arg> is not blank. Used for testing when
dummy parameters are supplied. The angle brack-
ets around <arg> are required.

True if the string < a r g l > is IDeNtical to the string
<arg2>. The angle brackets around < a r g l > and
<arg2> are required.

True if the string < a r g l > is DIFferent from the
string <arg2>. The angle brackets around < a r g l >
and <arg2> are required.

All conditionals use the following format:

IFxx [argument]

fELSE

END IF

Conditionals may be nested to any level.

3 - 1 0 CHAPTER THREE

Any argument to a conditional must be known on pass 1 to avoid V errors and
incorrect evaluation. For IF, IFT, IFF, and IFE the expression must involve values
which were previously defined and the expression must be absolute. If the name
is defined after an IFDEF or IFNDEF, pass 1 considers the name to be undefined,
but it will be defined on pass 2.

ELSE

Each conditional pseudo-operation may optionally be used with the ELSE
pseudo-opcode which allows alternate code to be generated when the opposite
condition exists. Only one ELSE is permitted for a given IF, and an ELSE is
always bound to the most recently opened IF. A conditional with more than one
ELSE or an ELSE without a conditional will cause a C error.

ENDIF

Each IF must have a matching ENDIF to terminate the conditional. Otherwise, an
Unterminated conditional' message is generated at the end of each pass. An

ENDIF without a matching IF causes a (J error.

Listing Control Pseudo-Operations

There are five listing control pseudo-ops. Output to the listing file can be
controlled by the following pseudo-ops:

LIST, .XLIST, SFCOND, LFCOND, TFCOND

If a listing is not being made, these pseudo-ops have no effect.

.LIST is the default condition. When a .XLIST is encountered, source and object
code will not be listed until a .LIST is encountered.

The latter three pseudo-ops control the listing of conditional pseudo-op blocks
which evaluate as false. These pseudo-ops give the programmer control over
four cases.

1. Normally list false conditionals — For this case, the programmer simply
allows the default mode to control the listing. The default mode is list false
conditionals. If the programmer decides to suppress false conditionals, the
/X switch can be issued in the command line instead of editing the source
file.

Pseudo-Opcodes/Assembier Directives 3-13

2. Normally suppress false conditionals — For this case, the programmer
issues the .TFCOND pseudo-op in the program file. .TFCOND reverses
(toggles) the default, causing false conditionals to be suppressed. If the
programmer decides to list false conditionals, the /X switch can be issued
in the command line instead of editing the source file.

3. Always suppress/list false conditionals — For these cases, the pro-
grammer issues either the .SFCOND pseudo-op to suppress false condi-
tionals, or the .LFCOND pseudo-op to list all false conditionals.

4. Suppress/list some false conditionals — For this case, the programmer has
decided for most false conditionals whether to list or suppress; but for
some false conditionals, the programmer has not yet decided. For the false
conditionals decided about, use .SFCOND or .LFCOND. For those not yet
decided, use .TFCOND. .TFCOND sets the current and default settings to
the opposite of the default. Initially, the default is set by giving /X or no /X
in the command line. Two subcases exist:

A. The programmer wants some false conditionals not to list unless /X is
given. The programmer uses the .SFCOND and .LFCOND pseudo-ops
to control which areas always suppress or list false conditionals. To
selectively suppress some false conditionals, the programmer issues
TFCOND at the beginning of the conditional block and again at the

end of the conditional block. (NOTE: The second .TFCOND should be
so that the default setting will be the same as the initial setting.
Leaving the default equal to the initial setting makes it easier to keep
track of the default mode if there are many such areas.) If the condi-
tional block evaluates as false, the lines will be suppressed. In this
subcase, issuing the /X switch in the command line causes the condi-
tional block affected by .TFCOND to list even if it evaluates as false.

B. The programmer wants some false conditionals to list unless /X is
given of the file. Two consecutive .TFCONDs places the conditional
listing setting in an initial state which is determined by the presence
or absense of the /X switch (the first .TFCOND sets the default to not
initial; the second to initial). The selected conditional block then
responds to the /X switch: if a /X switch is issued in the command
line, the conditional block is suppressed if false; if no /X switch is
issued in the command line, the conditional block is listed even if
false.

3 - 1 2 CHAPTER THREE

The programmer then must reissue the .SFCOND or .LFCOND condi-
tional listing pseudo-op to restore the suppress or list mode. Simply
issuing another .TFCOND will not restore the prior mode, but will
toggle the default setting. Since in this subcase, the next area of code
is supposed to list or suppress false conditionals always, the pro-
grammer must issue .SFCOND or .LFCOND.

The three conditional listing pseudo-ops are summarized below.

PSEUDO-OP DEFINITION

.SFCOND Suppresses the listing of conditional blocks that evaluate as
false.

.LFCOND Restores the listing of conditional blocks that evaluate as false.

.TFCOND Toggles the current setting which controls the listing of false
conditionals. .TFCOND sets the current and default setting to
not default. If a /X switch is given in the MACRO-80 run com-
mand line for a file which contains .TFCOND, /X reverses the
effect of .TFCOND.

The output of MACRO/REPT/IRP/IRPC expansions is controlled by three
pseudo-ops:

LALL, SALL, and XALL.

Where:

.LALL lists the complete macro text for all expansions.

.SALL lists only the object code produced by a macro and not its
text.

.XALL is the default condition; it is similar to .SALL, except a
source line is listed only it generates object code.

Pseudo-Opcodes/Assembier Directives 3-13

RELOCATION PSEUDO-OPERATIONS

The ability to create relocatable modules is one of the major features of MACRO-
80. Relocatable modules offer the advantages of easier coding and faster testing,
debugging and modifying. In addition, it is possible to specify segments of
assembled code that will later be loaded into RAM (the Data Relative segment)
and ROM/PROM (the Code Relative segment).

The pseudo-operations that select relocatable areas are CSEG and DSEG. The
ASEG pseudo-op is used to generate non-relocatable (absolute) code. The
COMMON pseudo-op creates a common data area for every COMMON block that
is named in the program.

The default mode for the Assembler is Code Relative. That is, assembly begins
with a CSEG automatically executed and the location counter in the Code
Relative mode, pointing to location 0 in the Code Relative segment of memory.
All subsequent instructions will be assembled into the Code Relative segment of
memory until an ASEG or DSEG or COMMON pseudo-op is executed.

For example, the first DSEG encountered sets the location counter to location
zero in the Data Relative segment of memory. The following code is assembled in
the Data Relative mode, where, it is assigned to the Data Relative segment of
memory. If a subsequent CSEG is encountered, the location counter will return to
the next free location in the Code Relative segment and so on.

The ASEG, DSEG, CSEG pseudo-ops never have operands. If you wish to alter the
current value of the location counter, use the ORG pseudo-op.

3 - 1 2 CHAPTER THREE

ORG Pseudo-Op

At any time, the value of the location counter may be changed by use of the the
ORG pseudo-op.

The form of the ORG statement is:

ORG <exp>

where the value of <exp> will be the new value of the location counter in the
current mode. All names used in <exp> must be known on pass 1 and the value of
<exp> must be either Absolute or in the current mode of the location counter.

For example, the statements

DSEG

ORG 50

set the Data Relative location counter to 50, relative to the start of the Data
Relative segment of memory.

LINK-80

The LINK-80 Linking Loader (see Section C) combines the segments and creates
each relocatable module in memory when the program is loaded. The origins of
the relocatable segments are not fixed until the program is loaded and the origins
are assigned by LINK-80. The command to LINK-80 may contain user-specified
origins through the use of the /P (for Code Relative) and /D (for Data and
COMMON segments) switches.

For example, a program that begins with the statements:

ASEG

ORG 800H

and is assembled entirely in Absolute mode will always load beginning at 800
unless the ORG statement is changed in the source file. However, the same
program, assembled in Code Relative mode with no ORG statement, may be
loaded at any specified address by appending the /P:<address> switch to the
LINK-80 command string.

Pseudo-Opcodes/Assembier Directives 3-13

Relocation Before Loading

Two pseudo-ops, .PHASE and .DEPHASE, allow code to be located in one area,
but executed only at a different, specified area.

For example:

.PHASE 100H

0100 CD 0106 F00: CALL BAZ

0103 C3 00D7' JMP ZOO

0106 C9 BAZ: RET

.DEPHASE

0007' C3 0005 ZOO: JMP 5

All labels within a .PHASE block are defined as the absolute value from the
origin of the phase area. The code, however, is loaded in the current area (i.e.,
from 0' in this example). The code within the block can later be moved to 100H
and executed.

Macros and Biock Pseudo-Operations J 4-5

Chapter Four

Macros and Block
Pseudo-Operations

OVERVIEW

The Macro-80 Assembler provides complete facilities for constructing macros
within the source program. Three repeat pseudo-operations as well as the macro
definition operation are included. The following chapter explains the construc-
tion and use of the macro facilities.

CHAPTER FOUR

MACROS AND BLOCK PSEUDO OPERATIONS

The macro facilities provided by MACRO-8O include three repeat pseudo-
operations: repeat (REPT), indefinite repeat (IRP), and indefinite repeat charac-
ter (IRPC). A macro definition operation (MACRO) is also provided. Each of these
four macro operations is terminated by the ENDM pseudo-operation.

Terms

For the purposes of discussion of macros and block operations, the following
terms will be used:

1. <dummy> is used to represent a dummy parameter. All dummy
parameters are legal symbols that appear in the body of a macro
expansion.

2. <dummylist> is a list of <dummy>s separated by commas.

3. <arglist> is a list of arguments separated by commas. <arglist> must
be delimited by angle brackets. Two angle brackets with no interven-
ing characters (< >) or two commas with no intervening characters
(, ,) enter a null argument in the list. Otherwise an argument is a
character or series of characters terminated by a comma or >.

With angle brackets that are nested inside an <arglist>, one level of
brackets is removed each time the bracketed argument is used in an
<arglist>.

A "quoted string" is an acceptable argument and is passed as such.
Unless enclosed in <brackets> or a "quoted string", leading and trail-
ing spaces are deleted from arguments.

4. <param!ist> is used to represent a list of actual parameters separated
by commas. No delimiters are required (the list is terminated by the
end of line or a comment), but the rules for entering null parameters
and nesting brackets are the same as described for <arglist>.

Macros and Biock Pseudo-Operations J 4-5

Block Pseudo Op-Codes

REPT-ENDM

REPT <exp>

ENDM

The block of statements between REPT and ENDM is repeated <exp> times.
<exp> is evaluated as a 16-bit unsigned number. If <exp> contains any external
or undefined terms, an error is generated.

Example:

X SET D

REPT 10 ;generates bytes 01-0A

X SET X+l

DB X

ENDM

IRP-ENDM

IRP < d u m m y > . < a r g l i s t >

ENDM

The <arglist> must be enclosed in angle brackets. The number of arguments in
the <arglist> determines the number of times the block of statements is repeated.
Each repetition substitutes the next item in the <arglist> for every occurrence of
<dummy> in the block. If the <arglist> is null (i.e., < >), the block is processed
once with each occurrence of <dummy> removed.

For example:

IRP X , < 1 , 2 , 3 , 4 , 5 , 6 , 7 . 8 . 9 . 1 0 >

DB X

ENDM

generates the same bytes as the REPT example.

CHAPTER FOUR

IRPC-ENDM

IRPC <dummy>,string (or <string>)

ENDM

IRPC is similar to IRP but the arglist is replaced by a string of text and the angle
brackets around the string are optional. The statements in the block are repeated
once for each character in the string. Each repetition substitutes the next charac-
ter in the string for every occurrence of <dummy> in the block.

For example:

IRPC X . 0 1 2 3 4 5 6 7 8 9
DB X + l
ENDM

generates the same code as the two previous examples.

MACRO

Often it is convenient to be able to generate a given sequence of statements from
various places in a program, even though different parameters may be required
each time the sequence is used.

This capability is provided by the MACRO statement.

<name> MACRO <dummylist>

ENDM

where <name> conforms to the rules for forming symbols. <name> is the name
that will be used to invoke the macro. The <dummy>s in <dummylist> are the
parameters that will be changed (replaced) each time the MACRO is invoked.
The statements before the ENDM comprise the body of the macro.

During assembly, the macro is expanded everytime it is invoked but, unlike
REPT/IRP/IRPC, the macro is not expanded when it is encountered.

In the listing, the expansion of the macro will be marked with a plus (+) .

Macros and Biock Pseudo-Operations J 4-5

The form of a macro call is:

<name> <param!ist>

where <name> is the name supplied in the MACRO definition, and the paramet-
ers in <paramlist> will replace the <dummy>s in the MACRO <dummylist> on a
one-to-one basis. The number of items in <dummylist> and <paramlist> is
limited only by the length of a line.

The number of parameters used when the macro is called need not be the same as
the number of <dummy>s in <dummylist>. If there are more parameters than
<dummy>s, the extras are ignored. If there are fewer, the extra <dummy>s will
be made null. The assembled code will contain the macro expansion code after
each macro call.

NOTE: A dummy parameter in a MACRO/REPT/IRP/IRPC is always recognized
exclusively as a dummy parameter. Register names such as A and B will be
changed in the expansion if they were used as dummy parameters.

Here is an example of a MACRO definition that defines a macro called FOO:

FOO MACRO X
Y SET 0

REPT X
Y SET Y + l

DB Y
ENDM
ENDM

This macro generates the same code as the previous three examples when the
call:

FOO 10

is executed.

CHAPTER FOUR

Another example, which generates the same code, illustrates the removal of one
level of brackets when an argument is used as an arglist:

FOO MACRO X
IRP Y . < X >
DB Y
ENDM
ENDM

When the call

FOO < 1 , 2 . 3 , 4 . 5 . 6 . 7 , 8 , 9 , 1 0 >

is made, the macro expansion looks like this:

IRP Y . < 1 , 2 , 3 , 4 , 5 . 6 , 7 , 8 , 9 . 1 0 >

DB Y

E N D M

ENDM

Every REPT, IRP, IRPC and MACRO pseudo-op must be terminated with the
ENDM pseudo-op. Otherwise, the Unterminated REPT/IRP/IRPC/MACRO'
message is generated at the end of each pass. An unmatched ENDM causes an O
error.

EXITM

The EXITM pseudo-op is used to terminate a REPT/IRP/IRPC or MACRO call.
When an EXITM is executed, the expansion is exited immediately and any
remaining expansion or repetition is not generated. If the block containing the
EXITM is nested within another block, the outer level continues to be expanded.

LOCAL

LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO definition.

When LOCAL is executed, the Assembler creates a unique symbol for each
<dummy> in <dummylist> and substitutes that symbol for each occurrence of
the <dummy> in the expansion. These unique symbols are usually used to define
a label within a macro, thus eliminating multiply-defined labels on successive
expansions of the macro. The symbols created by the Assembler range from
..0001 to ..FFFF. Users will therefore want to avoid the form ..nnnn for their own
symbols. If LOCAL statements are used, they must be the first statements in the
macro definition.

Macros and Biock Pseudo-Operations J 4-5

Speciai Macro Operators and Forms

& The ampersand "&" is used in a macro expansion to concatenate text or
symbols. A dummy parameter that is in a quoted string will not be
substituted in the expansion unless it is immediately preceded by an
ampersand. To form a symbol from text and a dummy, put an "&"
between them.

For example:

ERRGEN MACRO X

ERROR&X:PUSH B

MVI B . ' & X '

JMP ERROR

ENDM

In this example, the call ERRGEN A will generate:

ERROR&A: PUSH B

MVI B . ' A '

JMP ERROR

; ; In a block operation, a comment preceded by two semicolons is not saved
as part of the expansion (i.e., it will not appear on the listing even under
.LALL). A comment preceded by one semicolon, however, will be pre-
served and appear in the expansion.

! When an exclamation point is used in an argument, the next character is
entered literally (i.e., !; and < ; > are equivalent).

NUL NUL is an operator that returns true if its argument (a parameter) is null.
The remainder of a line after NUL is considered to be the argument to
NUL.

The conditional:

IF NUL argument

is false if, during the expansion, the first character of the argument is
anything other than a semicolon or carriage return. It is recommended
that testing for null parameters be done using the IFB and IFNB condi-
tionals.

The percent sign is used only in a macro argument. % converts the
expression that follows it (usually a symbol) to a number in the current
radix. During macro expansion, the number derived from converting the
expression is substituted for the dummy. Using the % special operator
allows a macro call by value. (Usually, a macro call is a call by reference
with the text of the macro argument substituting exactly for the dummy.)

The expression following the % must conform to the same rules as the DS
(Define Space) pseudo-op. A valid expression returning a nonrelocatable
constant is required.

For Example:

Normally, LB, the argument to MAKLAB, would be substituted for Y, the
argument to MACRO, as a string. The % causes LB to be converted to a
nonrelocatable constant which is then substituted for Y. Without the %
special operator, the result of assembly would be Error LB' rather than
Error 1', etc.

MAKLAB MACRO Y

ERR&Y: DB 'Error &Y',0

ENDM

MAKERR MACRO X

LB SET 0

REPT X

LB SET LB+1

MAKLAB %LB

ENDM

ENDM

When called by MAKERR 3, the assembler will generate:

ERR&l: DB 'Error 1' ,0

ERR&2: DB 'Error 2 ' ,0

ERR&3: DB 'Error 3 ' .0

Macros and Biock Pseudo-Operations J 4-5

TYPE The TYPE operator returns a byte that describes two characteristics of its
argument: 1) the mode, and 2) whether it is External or not. The argument
to TYPE may be any expression (string, numeric, logical). If the expres-
sion is invalid, TYPE returns zero.

The byte that is returned is configured as follows:

The lower two bits are the mode. If the lower two bits are:

0 the mode is Absolute
1 the mode is Program Relative
2 the mode is Data Relative
3 the mode is Common Relative

The high bit (80H) is the External bit. If the high bit is on, the expression
contains an External. If the high bit is off, the expression is local (not
External).

The Defined bit is 20H. This bit is on if the expression is locally defined,
and it is off if the expression is undefined or external. If neither bit is on,
the expression is invalid.

TYPE is usually used inside macros, where an argument type may need to
be tested to make a decision regarding program flow.

4 - 1 0) CHAPTER FOUR

Using Z80 Pseudo-Ops

When using the 8080/Z80 assembler, the following Z80 pseudo-ops are valid.
The function of each pseudo-op is equivalent to that of its 8080 counterpart.

Z80 pseudo-op Equiva!ent 8080 pseudo-op

COND
ENDC
* EJECT
DEFB
DEFS
DEFW
DEFM
DEFL
GLOBAL
EXTERNAL

IFT
ENDIF
PAGE
DB
DS
DW
DB
SET
PUBLIC
EXTRN

The formats, where different, conform to the 8080 format. That is, DEFB and
DEFW are permitted a list of arguments (as are DB and DW), and DEFM is
permitted a string or numeric argument (as is DB).

tndex

MACRQ-80 Reference Manua! Index

Absolute mode, 2-3
Arithmetic operators, 2-2
ASEG, 3-2
Assembler directives, 3-1

Block Psuedo-Opcodes, 4-3

COMMENT, 3-6
COMMON, 3-2
COMMON mode, 2-3
Conditional pseudo-opcodes, 3-10
Constants, 1-4
Cross reference facility, 1-10
CSEG, 3-2

Data relative mode, 2-3
Data storage, 3-8
DB, 3-3
Default filename extensions, 1-5
Directives, assembler, 3-1
DS, 3-3
DSEG, 3-4
DW, 3-4

ELSE, 3-10
END, 3-4
ENDIF, 3-10
ENDM, 4-6
ENTRY, 3-4
EQU, 3-4
Error messages, 1-11, 1-12
Examples, 1-6, 1-9
EXITM, 4-6
Expression evaluation, 2-1
EXT, 3-5
Extensions, filename, 1-5
Externals, 2-4
EXTRN, 3-5

Format of Commands, 1-5
Format of MACRO-8O source files, 1-2

IRP-ENDM, 4-3
IRPC ENDM, 4-4

.LALL, 3-12
LINK-80, 3-12
Listing control pseudo opcodes, 3-10
Listing, symbol table, 1-8
Loading, relocation before, 3-13
LOCAL, 4-6
Logical operators, 2-2

Macros, 4-1, 4-5
MACRO-80 switches, 1-7
Macro operators, special, 4-7
Messages, error, 1-9, 1-10
Modes, 2-3

Name, 3-5
Numeric Constants, 1-4

Opcodes as operands, 2-4
Opcodes, pseudo-, 3-1
Operators, special Macro, 4-7
ORG, 3-5, 3-12

PAGE, 3-5
.PRINTX, 3-7
Program relative mode, 2-3
Pseudo-opcodes, 3-1

Block, 4-2
Conditional, 3-9
Listing control, 3-10
Relocation, 3-11
Z80, 4-8

Public, 3-4

5 * 2 CHAPTER F!VE

.RADIX, 3-7
Reference, cross, 1-11
Relocation before loading, 3-13
Relocation, pseudo opcodes, 3-11
REPT-ENDM, 4-3
REQUEST, 3-8

.SALL, 3-12
SET, 3-6
Special operators, 4-7
Statements, 1-4
Strings, 1-4
SUBTTL, 3-6
Switches, M A C R 0 8 0 , 1-6
Symbols, 1-4

Terms, Macro, 4-2
TITLE, 3-6

.XALL, 3-12

Z80, 3-8
Z80 pseudo-opcodes, 4-8

