
t i T ^ r

The 8080 is a complete 8-bit parallel, central processor

unit (CPU) for use in genera! purpose digital computer sys-

tems. It is fabricated on a single LSI chip (see Figure 2-1).

using Intel's n-channe) silicon gate MOS process. The 8080

transfers data and interna) state information via an 8-bit,

bidirectional 3-state Data Bus (DQ-D7). Memory and peri-

pheral device addresses are transmitted over a separate 16-

bit 3-state Address Bus (A0-A15). Six timing and control

outputs (SYNC, DBIN, WA)T,WR, HLDA and INTE) eman-

ate from the 8080, while four control inputs (READY ,

HOLD, INT and RESET), four power inputs (+12v, +5v,

-5v, and GND) and two clock inputs (01 and ^2) are ac-

cepted by the 8080.

MIT HEADY HLDA
f

"ruMm

tMaEBPWtW,
.duamamyta.

w -

An A,; A,3 A„ A„

... J

. . ^ . y s P r "t-

'.' S L. < < ..

' . =- .

- . A M ', ^ .

... r y W i

. ti

.

. BiUtatĈ mNÂ
- ̂ . ..

GND O-

D , O-

D , O-
^

Dp O
O, O

O. 0
- 5 V O-

RESET O

HOLD O-

INT O-

INTE O -

DBIN o -

WR O-

SYNC O -

+5V O -

9

10

11

12

13

14

15

16

17

18

19

20

! N T E t T

8080

-O A^

-O A^

-O A^

- O A , 5

<-0 Ag

-O Ag

- O A?

-O A.
A5

- O A„

- O + H V

-O A2

-O Ai

-O A„

<-0 WAIT

- O R E A D Y

-O #1

Figure 2 1. 8080 Photomicrograph With Pin Designations

2-1

ARCHtTECTURE OF THE 8080 CPU

The 8080 CPU consists of the following functional

units:

* Register array and address logic

* Arithmetic and logic unit (ALU)

* Instruction register and control section

* Bi-directional, 3-state data bus buffer

Figure 2-2 illustrates the functional blocks within

the 8080 CPU.

Registers:

The register section consists of a static RAM array

organized into six 16-bit registers:

* Program counter (PC)

* Stack pointer (SP)

* Six 8-bit general purpose registers arranged in pairs,

referred to as B,C; D,E; and H,L

* A temporary register pair called W,Z

The program counter maintains the memory address

of the current program instruction and is incremented auto-

matically during every instruction fetch. The stack pointer

maintains the address of the next available stack location in

memory. The stack pointer can be initialized to use any

portion of read-write memory as a stack. The stack pointer

is decremented when data is "pushed" onto the stack and

incremented when data is " popped" off the stack (i.e., the

stack grows "downward") .

The six general purpose registers can be used either as

single registers (8-bit) or as register pairs (16-bit). The

temporary register pair, W,Z, is not program addressable

and is only used for the internal execution of instructions.

Eight-bit data bytes can be transferred between the

internal bus and the register array via the register-select

multiplexer. Sixteen-bit transfers can proceed between the

register array and the address latch or the incrementer/

decrementer circuit. The address latch receives data from

any of the three register pairs and drives the 16 address

output buffers (A0-A15), as well as the incrementer/

decrementer circuit. The incrementer/decrementer circuit

receives data from the address latch and sends it to

the register array. The 16-bit data can be incremented or

decremented or simply transferred between registers.

Di D„ BI-DIRECTIONAL

DATA BUS

DATA BUS INTERRUPT HOLD WAIT

WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS

INTE INT HOLDHOLDWAIT SYNC <̂ 2 RESET

ACK READY
ADDRESS BUS

Figure 2 2. 8080 CPU Functional Block Diagram

2 2

Arithmetic and Logic Unit (ALU):

The ALU contains the following registers:

* An 8-bit accumulator

* An 8-bit temporary accumulator (ACT)

* A 5-bit flag register: zero, carry, sign, parity and

auxiliary carry

* An 8-bit temporary register (TMP)

Arithmetic, logical and rotate operations are per-

formed in the ALU. The ALU is fed by the temporary

register (TMP) and the temporary accumulator (ACT) and

carry flip-flop. The result of the operation can be trans-

ferred to the internal bus or to the accumulator; the ALU

also feeds the flag register.

The temporary register (TMP) receives information

from the internal bus and can send all or portions of it to

the ALU, the flag register and the internal bus.

The accumulator (ACC) can be loaded from the ALU

and the internal bus and can transfer data to the temporary

accumulator (ACT) and the internal bus. The contents of

the accumulator (ACC) and the auxiliary carry flip-flop can

be tested for decimal correction during the execution of the

DAA instruction (see Chapter 4).

tnstruction Register and Contro!:

During an instruction fetch, the first byte of an in-

struction (containing the OP code) is transferred from the

internal bus to the 8-bit instruction register.

The contents of the instruction register are, in turn,

available to the instruction decoder. The output of the

decoder, combined with various timing signals, provides

the control signals for the register array, ALU and data

buffer blocks. In addition, the outputs from the instruction

decoder and external control signals feed the timing and

state control section which generates the state and cycle

timing signals.

Data Bus Buffer:

This 8-bit bidirectional 3-state buffer is used to

isolate the CPU's internal bus from the external data bus.

(Do through Dy). In the output mode, the internal bus

content is loaded into an 8-bit latch that, in turn, drives the

data bus output buffers. The output buffers are switched

off during input or non-transfer operations.

During the input mode, data from the external data bus

is transferred to the internal bus. The internal bus is pre-

charged at the beginning of each internal state, except for

the transfer state (T3—described later in this chapter).

THE PROCESSOR CYCLE

An instruction cycte is defined as the time required

to fetch and execute an instruction. During the fetch, a

selected instruction (one, two or three bytes) is extracted

from memory and deposited in the CPU's instruction regis-

ter. During the execution phase, the instruction is decoded

and translated into specific processing activities.

Every instruction cycle consists of one, two, three,

four or five machine cycles. A machine cycte is required

each time the CPU accesses memory or an I/O port. The

fetch portion of an instruction cycle requires one machine

cycle for each byte to be fetched. The duration of the execu-

tion portion of the instruction cycle depends on the kind

of instruction that has been fetched. Some instructions do

not require any machine cycles other than those necessary

to fetch the instruction; other instructions, however, re-

quire additional machine cycles to write or read data to/

from memory or I/O devices. The D A D instruction is an

exception in that it requires two additional machine cycles

to complete an internal register-pair add (see Chapter 4).

Each machine cycle consists of three, four or five

states. A state is the smallest unit of processing activity and

is defined as the interval between two successive positive-

going transitions of the 01 driven clock pulse. The 8080

isdriven by a two-phase clock oscillator. All processing activ-

ities are referred to the period of this clock. The two non-

overlapping clock pulses, labeled 01 and 02. are furnished

by external circuitry. It is the 01 clock pulse which divides

each machine cycle into states. Timing logic within the

8080 uses the clock inputs to produce a SYNC pulse,

which identifies the beginning of every machine cycle. The

SYNC pulse is triggered by the low-to-high transition of 02,

as shown in Figure 2-3.

^ —

FIRST STATE OF

' EVERY MACHINE

CYCLE

/ \ ^ —

/ \ / \

SYNC SYNC / \

' SYNC DOES NOT OCCUR IN THE SECOND AND THIRD MACHINE

CYCLES OF A DAD INSTRUCTION SINCE THESE MACHINE CYCLES

ARE USED FOR AN INTERNAL REGISTER-PAIR ADD.

Figure 2 3 . 0 1 , 0 2 And SYNC Timing

There are three exceptions to the defined duration of

a state. They are the WAIT state, the hold (HLDA) state

and the halt (HLTA) state, described later in this chapter.

Because the WAIT, the HLDA , and the HLTA states depend

upon external events, they are by their nature of indeter-

minate length. Even these exceptional states, however, must

2-3

be synchronized with the pulses of the driving clock. Thus,

the duration of all states are integral multiples of the clock

period.

To summarize then, each ctock period marks a state;

three to five states constitute a machine cycle; and one to

five machine cycles comprise an instruction cycte. A full

instruction cycle requires anywhere from four to eight-

teen states for its completion, depending on the kind of in-

struction involved.

Machine Cycte tdentification:

With the exception of the D A D instruction, there is

just one consideration that determines how many machine

cycles are required in any given instruction cycle: the num-

ber of times that the processor must reference a memory

address or an addressable peripheral device, in order to

fetch and execute the instruction. Like many processors,

the 8080 is so constructed that it can transmit only one

address per machine cycle. Thus, if the fetch and execution

of an instruction requires two memory references, then the

instruction cycle associated with that instruction consists of

two machine cycles. If five such references are called for,

then the instruction cycle contains five machine cycles.

Every instruction cycle has at least one reference to

memory, during which the instruction is fetched. An in-

struction cycle must always have a fetch, even if the execu-

tion of the instruction requires no further references to

memory. The first machine cycle in every instruction cycle

is therefore a FETCH. Beyond that, there are no fast rules.

It depends on the kind of instruction that is fetched.

Consider some examples. The add-register (ADD r)

instruction is an instruction that requires only a single

machine cycle (FETCH) for its completion. In this one-byte

instruction, the contents of one of the CPU's six general

purpose registers is added to the existing contents of the

accumulator. Since all the information necessary to execute

the command is contained in the eight bits of the instruction

code, only one memory reference is necessary. Three states

are used to extract the instruction from memory, and one

additional state is used to accomplish the desired addit ion.

The entire instruction cycle thus requires only one machine

cycle that consists of four states, or four periods of the ex-

terna) clock.

Suppose now, however, that we wish to add the con-

tents of a specific memory location to the existing contents

of the accumulator (ADD M). Although this is quite similar

in principle to the example just cited, several additional

steps will be used. An extra machine cycle will be used, in

order to address the desired memory location.

The actual sequence is as follows. First the processor

extracts from memory the one-byte instruction word ad-

dressed by its program counter. This takes three states.

The eight-bit instruction word obtained during the FETCH

machine cycle is deposited in the CPU's instruction register

and used to direct activities during the remainder of the

instruction cycle. Next, the processor sends out,as an address,

the contents of its H and L registers. The eight-bit data

word returned during this M E M O R Y R E A D machine cycle

is placed in a temporary register inside the 8080 CPU. By

now three more clock periods (states) have elapsed. In the

seventh and final state, the contents of the temporary regis-

ter are added to those of the accumulator. Two machine

cycles, consisting of seven states in all, complete the

" A D D M " instruction cycle.

A t the opposite extreme is the save H and L registers

(SHLD) instruction, which requires five machine cycles.

During an " S H L D " instruction cycte, the contents of the

processor's H and L registers are deposited in two sequen-

tially adjacent memory locations; the destination is indi-

cated by two address bytes which are stored in the two

memory locations immediately following the operation code

byte. The following sequence of events occurs:

(1) A FETCH machine cycle, consisting of four

states. During the first three states of this

machine cycle, the processor fetches the instruc-

tion indicated by its program counter. The pro-

gram counter is then incremented. The fourth

state is used for internal instruction decoding.

(2) A M E M O R Y R E A D machine cycle, consisting

of three states. During this machine cycle, the

byte indicated by the program counter is read

from memory and placed in the processor's

Z register. The program counter is incremented

again.

(3) Another M E M O R Y R E A D machine cycle, con-

sisting of three states, in which the byte indica-

ted by the processor's program counter is read

from memory and placed in the W register. The

program counter is incremented, in anticipation

of the next instruction fetch.

(4) A M E M O R Y WRtTE machine cycle, of three

states, in which the contents of the L register

are transferred to the memory location pointed

to by the present contents of the W and Z regis-

ters. The state following the transfer is used to

increment the W,Z register pair so that it indi-

cates the next memory location to receive data.

(5) A M E M O R Y WRtTE machine cycle, of three

states, in which the contents of the H register

are transferred to the new memory location

pointed to by the W,Z register pair.

In summary, the " S H L D " instruction cycle contains

five machine cycles and takes 16 states to execute.

Most instructions fall somewhere between the ex-

tremes typified by the " A D D r " and the " S H L D " instruc-

tions. The input (INP) and the ou tpu t (OUT) instructions,

for example, require three machine cycles: a FETCH, to

obtain the instruction; a M E M O R Y R E A D , to obtain the

address of the object peripherat; and an tNPUT or an OUT-

PUT machine cycle, to complete the transfer.

2-4

White no one instruction cycle will consist o f more

then five machine cycles, the fo l lowing ten different types

of machine cycles may occur wi th in an instruction cycle:

(1) FETCH (M1)

(2) M E M O R Y R E A D

(3) M E M O R Y W R I T E

(4) STACK R E A D

(5) STACK W R I T E

(6) tNPUT

(7) O U T P U T

(8) I N T E R R U P T

(9) H A L T

(10) H A L T . I N T E R R U P T

The machine cycles that actual ly do occur in a par-

ticular instruction cycle depend upon the k ind of instruc-

t ion , wi th the overriding st ipulat ion that the first machine

cycle in any instruction cycle is always a FETCH.

The processor identifies the machine cycle in prog-

ress by transmitt ing an eight-bit status word during the first

state of every machine cycle. Updated status in format ion is

presented on the 8080's data lines (D0-D7), dur ing the

S Y N C interval. This data should be saved in latches, and

used to develop control signals for external circuitry. Table

2-1 shows how the positive-true status in format ion is dis-

tr ibuted on the processor's data bus.

Status signals are provided principally for the control

of external circuitry. S impl ic i ty of interface, rather than

machine cycle identif icat ion, dictates the logical def in i t ion

of individual status bits. Y o u will therefore observe that

certain processor machine cycles are uniquely identif ied by

a single status bit , but that others are not . The M^ status

bit (Dg) , for example, unambiguous ly identifies a FETCH

machine cycle. A STACK R E A D , on the other hand, is

indicated by the coincidence o f STACK and MEtVtR sig-

nals. Machine cycle identif icat ion data is also valuable in

the test and de-bugging phases of system development .

Table 2-1 lists the status bit ou tpu ts for each type of

machine cycle.

State Transition Sequence:

Every machine cycle wi th in an instruction cycle con-

sists of three to five active states (referred to as T^ , T2, T3,

T4, T5 or T w) . The actual number of states depends upon

the instruction being executed, and on the particular ma-

chine cycle w i th in the greater instruction cycle. The state

transition diagram in Figure 2-4 shows how the 8080 pro-

ceeds f rom state to state in the course of a mach ine cycle.

The diagram also shows how the R E A D Y , H O L D , and

I N T E R R U P T lines are sampled dur ing the mach ine cycle,

and how the condi t ions on these lines may mod i fy the

basic transit ion sequence, tn the present discussion, we are

concerned on ly wi th the basic sequence and with the

R E A D Y func t ion . The H O L D and I N T E R R U P T funct ions

will be discussed later.

The 8080 CPU does not directly indicate its internal

state by transmitt ing a "state con t r o l " ou tpu t dur ing

each state; instead, the 8080 supplies direct control ou tpu t

(INTE, H L D A , D B I N , W R and WA IT) for use by external

circuitry.

Recall that the 8080 passes through at least three

states in every machine cycle, wi th each state def ined by

successive low-to-high transit ions of the 01 clock. Figure

2-5 shows the t iming relationships in a typical FETCH

machine cycle. Events that occur in each state are referenced

to transit ions of the 0 i and 02 clock pulses.

The S Y N C signal identifies the first state (T-]) in

every machine cycle. As shown in Figure 2-5, the S Y N C

signal is related to the leading edge of the 02 clock. There is

a delay (t p c) between the low-to-high transit ion of 02 and

the positive-going edge of the S Y N C pulse. There also is a

corresponding delay (also t p ^) between the next 02 Pulse

and the falling edge o f the S Y N C signal. Status in format ion

is displayed on DQ-D7 during the same 02 to 02 interval.

Switching of the status signals is likewise control led by 02-

The rising edge of 02 during T i also loads the pro-

cessor's address lines (AQ-A15). These lines become stable

wi th in a brief delay (t p ^) of the 02 clocking pulse, and

they remain stable unti l the first 02 pulse after state T3.

This gives the processor ample t ime to read the data re-

turned f rom memory .

Once the processor has sent an address to memory ,

there is an oppor tun i ty for the memory to request a WA IT .

This it does by pull ing the processor's R E A D Y line low,

prior to the " R e a d y set-up" interval (tRg) wh ich occurs

dur ing the 02 pulse w i th in state T2 or Tw- As long as the

R E A D Y line remains low, the processor wil l idle, giving the

memory t ime to respond to the addressed data request.

Refer to Figure 2-5.

The processor responds to a wai t request by entering

an alternative state (Tw) at the end of T2, rather than pro-

ceeding directly to the T 3 state. Entry into the T w state is

indicated by a W A I T signal f rom the processor, acknowledg-

ing the memory 's request. A low-to-high transit ion on the

W A I T line is triggered by the rising edge of the 0-] clock and

occurs w i th in a brief delay (t p c) of the actual entry into

the T w state.

A wai t period may be of indefinite durat ion . The pro-

cessor remains in the wait ing cond i t ion unti l its R E A D Y line

again goes high. A R E A D Y indicat ion mus t precede the fall-

ing edge of the 02 clock by a specified interval (tRg) , in

order to guarantee an exit f r om the T ^ state. The cycle

may then proceed, beginning wi th the rising edge of the

next 01 clock. A W A I T interval wil l therefore consist of an

integral number of T^v states and wil l always be a mul t ip le

of the clock period.

2-5

tnstructions for the 8080 require from one to five machine

cycles for complete execution. The 8080 sends out 8 bit of

status information on the data bus at the beginning of each

machine cycle (during SYNC time). The following table defines

the status information.

Symbols

INTA*

WO

STACK

HLTA

OUT

M,

INP*

MEMR '

STATUS INFORMATION DEFtNtTtON

Data Bus

Bit Definition

D 0

D3

D4

Acknowledge signal for INTERRUPT re-

quest. Signal should be used to gate a re

start instruction onto the data bus when

DBtN is active.

Indicates that the operation in the current

machine cycle will be a WRITE memory

orOUTPUT function (WO = 0).0therwise,

a READ memory or INPUT operation will

be executed.

Indicates that the address bus holds the

pushdown stack address from the Stack

Pointer.

Acknowledge signal for HALT instruction.

Indicates that the address bus contains the

address of an output device and the data

bus will contain the output data when

WR is active.

Provides a signal to indicate that the CPU

is in the fetch cycle for the first byte of

an instruction.

Indicates that the address bus contains the

address of an input device and the input

data should be placed on the data bus

when DBIN is active.

Designates that the data bus will be used

for memory read data.

STATUS W O R D CHART
TYPE OF MACHtNE CYCLE

(D @ (3) (D @ @ (7) (§) @ 0

Do I N T A 0 0 0 0 0 0 0 1 0 1

D1 WO i 1 0 1 0 1 0 1 1 1

D 2 S T A C K 0 0 0 1 1 0 0 0 0 0

D3 H L T A 0 0 0 0 0 0 0 0 1 1

D4 O U T 0 0 0 0 0 0 1 0 0 0

D 5 M i 1 0 0 0 0 0 0 1 0 1

D e INP 0 0 0 0 0 1 0 0 0 0

D ? M E M R 1 1 0 1 0 0 0 0 1 0

STATUS W O R D

Tabte 2-1. 8080 Status Bit Def in i t ions

2-6

H O L D - INT

H O L D

S E T I N T E R N A L

H O L D F /F

!3)

R E S E T I N T E R N A L

H O L D F/F

" ' i N T E F/F IS RESET IF I N T E R N A L INT F/F IS SET.

' ^ ' I N T E R N A L INT F/F IS RESET IF INTE F/F IS RESET.

O ' SEE PAGE 2 13.

Figure 2 4. CPU State Transition Diagram

2 7

The events that take place during the T3 state are

determined by the kind of machine cycte in progress. In a

FETCH machine cycle, the processor interprets the data on

its data bus as an instruction. During a M E M O R Y READ or

a STACK R E A D , data on this bus is interpreted as a data

word. The processor outputs data on this bus during a

M E M O R Y WRtTE machine cycle. During I/O operations,

the processor may either transmit or receive data, de-

pending on whether an OUTPUT or an tNPUT operation

is invotved.

Figure 2-6 illustrates the t iming that is characteristic

of a data input operation. As shown, the low-to-high transi-

tion of 02 during T2 clears status information from the pro-

cessor's data lines, preparing these lines for the receipt of

incoming data. The data presented to the processor must

have stabilized prior to both the "0-]—data set-up" interval

(*DS1 L th3t precedes the falling edge of the 0-) pulse defin-

ing state T 3 , and the "02—data set-up" interval (tQg2),

that precedes the rising edge of 02 in state T 3 . This same

data must remain stable during the "data ho ld " interval

(tDH) thst occurs foltowing the rising edge of the 02 putse.

Data placed on these lines by memory or by other external

devices will be sampled during T3 .

During the input of data to the processor, the 8080

generates a DBIN signal which should be used externally to

enable the transfer. Machine cycles in which DBIN is avail-

able include: FETCH, M E M O R Y R E A D , STACK R E A D ,

and INTERRUPT. DBIN is initiated by the rising edge of 02

during state T2 and terminated by the corresponding edge of

02 during T3. Any Tw phases intervening between T2 and

T3 will therefore extend DBIN by one or more clock

periods.

Figure 2-7 shows the t iming of a machine cycle in

which the processor outputs data. Ou tpu t data may be des-

tined either for memory or for peripherals. The rising edge

of 02 within state T2 clears status information from the

CPU's data lines, and loads in the data which is to be output

to external devices. This substitution takes place within the

NOTE : (N) Refer to Status Word Chart on Page 2-6.

Figure 2-5. Basic 8080 tnstruction Cycte

2-8

NOTE : (N) Refer to Status Word Chart on Page 2-6.

Figure 2-6. input instruction Cycte

NOTE : @ Refer to Status Word Chart on Page 2-6.

Figure 2-7. Ou tpu t tnstruction Cycte

2-9

"data output delay" interval (tDD) following the 02 clock's

leading edge. Data on the bus remains stable throughout

the remainder of the machine cycle, until replaced by up-

dated status information in the subsequent T-] state. Observe

that a R E A D Y signal is necessary for completion of an

OUTPUT machine cycle. Unless such an indication is pres-

ent, the processor enters the Tw state, following the T2

state. Data on the output lines remains stable in the

interim, and the processing cycle will not proceed until

the R E A D Y line again goes high.

The 8080 CPU generates a WR output for the syn-

chronization of external transfers, during those machine

cycles in which the processor outputs data. These include

M E M O R Y WRITE , STACK WRITE , and OUTPUT. The

negative-going leading edge of WR is referenced to the rising

edge of the first 0-] clock pulse following T2, and occurs

within a brief delay (tpc) of that event. WR remains low

until re-triggered by the leading edge of 0^ during the

state following T 3 . Note that any T ^ states intervening

between T2 and T 3 of the output machine cycle will neces-

sarily extend WR , in much the same way that DB!N is af-

fected during data input operations.

All processor machine cycles consist of at least three

states: T i , T2, and T3 as just described. If the processor has

to wait for a response from the peripheral or memory with

which it is communicating, then the machine cycle may

also contain one or more Tw states. During the three basic

states, data is transferred to or from the processor.

After the T3 state, however, it becomes difficult to

generalize. T4 and T5 states are available, if the execution

of a particular instruction requires them. But not all machine

cycles make use of these states. It depends upon the kind of

instruction being executed, and on the particular machine

cycle within the instruction cycle. The processor will termi-

nate any machine cycle as soon as its processing activities

are completed, rather than proceeding through the T4 and

T5 states every time. Thus the 8080 may exit a machine

cycle following the T3, the T4, or the T5 state and pro-

ceed directly to the T-] state of the next machine cycle.

STATE ASSOC iATED ACT!V !T !ES

T1 A memory address or I/O device number is

placed on the Address Bus (A15.0); status

information is placed on Data Bus (D7.0).

T2 The CPU samples the R E A D Y and HOLD in-

puts and checks for halt instruction.

TW

(optional)

Processor enters wait state if R E A D Y is low

or if HALT instruction has been executed.

T3 An instruction byte (FETCH machine cycle),

data byte (MEMORY READ , STACK READ)

or interrupt instruction (INTERRUPT machine

cycle) is input to the CPU from the Data Bus;

or a data byte (MEMORY WRITE, STACK

WRITE or OUTPUT machine cycle) is output

onto the data bus.

T4

T5

(optional)

States T4 and T5 are available if the execu-

tion of a particular instruction requires them;

if not, the CPU may skip one or both of

them. T4 and T5 are only used for internal

processor operations.

Tabie 2-2. State Definitions

2-10

tNTERRUPT SEQUENCES

The 8080 has the built-in capacity to handle external

interrupt requests. A peripheral device can initiate an inter-

rupt simply by driving the processor's interrupt (INT) line

high.

The interrupt (INT) input is asynchronous, and a

request may therefore originate at any time during any

instruction cycle. Internal logic re-clocks the external re-

quest, so that a proper correspondence with the driving

clock is established. As Figure 2-8 shows, an interrupt

request (INT) arriving during the time that the interrupt

enable line (INTE) is high, acts in coincidence with the 02

clock to set the internal interrupt latch. This event takes

place during the last state of the instruction cycle in which

the request occurs, thus ensuring that any instruction in

progress is completed before the interrupt can be processed.

The INTERRUPT machine cycle which follows the

arrival of an enabled interrupt request resembles an ordinary

FETCH machine cycle in most respects. The IV) 1 status bit

is transmitted as usual during the SYNC interval. It is

accompanied, however, by an INTA status bit (Do) which

acknowledges the external request. The contents of the

program counter are latched onto the CPU's address lines

during T^, but the counter itself is not incremented during

the INTERRUPT machine cycle, as it otherwise would be.

In this way, the pre-interrupt status of the program counter

is preserved, so that data in the counter may be restored by

the interrupted program after the interrupt request has been

processed.

The interrupt cycle is otherwise indistinguishable from

an ordinary FETCH machine cycle. The processor itself

takes no further special action. It is the responsibility of the

peripheral logic to see that an eight-bit interrupt instruction

is " j ammed " onto the processor's data bus during state T3.

In a typical system, this means that the data-in bus from

memory must be temporarily disconnected from the pro-

cessor's main data bus, so that the interrupting device can

command the main bus wi thout interference.

The 8080's instruction set provides a special one-byte

call which facilitates the processing of interrupts (the ordi-

nary program Cat! takes three bytes). This is the RESTART

instruction (RST). A variable three-bit field embedded in

the eight-bit field of the RST enables the interrupting device

to direct a Call to one of eight fixed memory locations. The

decimal addresses of these dedicated locations are: 0, 8, 16,

24, 32, 40, 48, and 56. Any of these addresses may be used

to store the first instruction(s) of a routine designed to

service the requirements of an interrupting device. Since

the (RST) is a call, completion of the instruction also

stores the old program counter contents on the STACK.

Figure 2-8. interrupt Timing

2-11

12

M n

13 <14) (T5)*

J i ^ a

^15 0

D7.0

H O L D

REQUEST (it

H O L D F/F

INTERNAL .

^ n n T L

! ! !

- K - -

SIS SEE ATTACHED ELECTR ICAL CHARACTER IST ICS .

\ n

n n

A N D T5 O P E R A T I O N CAN BE

DONE I N T E R N A L L Y .

Figure 2-9. H O L D Operation (Read Mode)

o?o

J —

H O L D

REQUEST

H O L D

R E A D Y -

PL

J L

J

f Y

J — ^

f L

J — J — V

I FLOATING

. f l

J — L

H O L D F/F

INTERNAL .

WRITE DATA

Figure 2-10. H O L D Operation (Write Mode)

2-12

HOLD SEQUENCES

The 8080A CPU contains provisions for Direct Mem-

ory Access (DMA) operations. By applying a H O L D to the

appropriate control pin on the processor, an external device

can cause the CPU to suspend its normal operations and re-

tinquish control of the address and data busses. The proces-

sor responds to a request of this kind by ftoating its address

to other devices sharing the busses. A t the same t ime, the

processor acknowledges the H O L D by placing a high on its

HLDA outpin pin. During an acknowledged HOLD , the

address and data busses are under control of the peripheral

which originated the request, enabling it to conduct mem-

ory transfers wi thout processor intervention.

Like the interrupt, the H O L D input is synchronized

internally. A H O L D signal must be stable prior to the "Ho ld

set-up" interval (tHs). that precedes the rising edge of 02-

Figures 2-9 and 2-10 illustrate the timing involved in

HOLD operations. Note the delay between the asynchronous

HOLD REQUEST and the re-clocked HOLD . As shown in

the diagram, a coincidence of the R E A D Y , the H O L D , and

the 02 clocks sets the internal hold latch. Setting the latch

enables the subsequent rising edge of the 0-] clock pulse to

trigger the H L D A output .

Acknowledgement of the H O L D REQUEST precedes

slightly the actual floating of the processor's address and

data lines. The processor acknowledges a HOLD at the begin-

ning of T3, if a read or an input machine cycle is in progress

(see Figure 2-9). Otherwise, acknowledgement is deferred

until the beginning of the state following T3 (see Figure

2-10). In both cases, however, the H L D A goes high within

a specified delay (t p ^) of the rising edge of the selected 01

clock pulse. Address and data lines are floated within a

brief delay after the rising edge of the next 02 clock pulse.

This relationship is also shown in the diagrams.

To all outward appearances, the processor has suspend-

ed its operations once the address and data busses are floated.

Internally, however, certain functions may continue. If a

H O L D REQUEST is acknowledged at T3, and if the pro-

cessor is in the middle of a machine cycle which requires

four or more states to complete, the CPU proceeds through

T4 and T5 before coming to a rest. Not until the end of the

machine cycle is reached will processing activities cease.

Internal processing is thus permitted to overlap the external

DMA transfer, improving both the efficiency and the speed

of the entire system.

The processor exits the holding state through a

sequence similar to that by which it entered. A HOLD

REQUEST is terminated asynchronously when the external

device has completed its data transfer. The H L D A output

returns to a low level following the leading edge of the next

01 clock pulse. Normal processing resumes with the ma-

chine cycle following the last cycle that was executed.

HALT SEQUENCES

When a halt instruction (HLT) is executed, the CPU

enters the halt state (T^)-]) aftsr state T2 of the next ma-

chine cycle, as shown in Figure 2-11. There are only three

ways in which the 8080 can exit the halt state:

* A high on the RESET line will always reset the

8080 to state T^ ; RESET also clears the program

counter.

* A H O L D input will cause the 8080 to enter the

hold state, as previously described. When the

HOLD line goes low, the 8080 re-enters the halt

state on the rising edge of the next 01 clock

pulse.

* An interrupt (i.e., INT goes high while INTE is

enabled) will cause the 8080 to exit the Halt state

and enter state T-] on the rising edge of the next

01 clock pulse. NOTE: The interrupt enable (INTE)

flag must be set when the halt state is entered;

otherwise, the 8080 will only be able to exit via a

RESET signal.

Figure 2-12 illustrates halt sequencing in f low chart

form.

START-UP OF THE 8080 CPU

When power is applied initially to the 8080, the pro-

cessor begins operating immediately. The contents of its

program counter, stack pointer, and the other working regis-

ters are naturally subject to random factors and cannot be

specified. For this reason, it will be necessary to begin the

power-up sequence with RESET.

An external RESET signal of three clock period dura-

tion (min imum) restores the processor's internal program

counter to zero. Program execution thus begins with mem-

ory location zero, following a RESET. Systems which re-

quire the processor to wait for an explicit start-up signal

will store a halt instruction (El, HLT) in the first two loca-

tions. A manual or an automat ic INTERRUPT will be used

for starting. In other systems, the processor may begin ex-

ecuting its stored program immediately. Note, however, that

the RESET has no effect on status flags, or on any of the

processor's working registers (accumulator, registers, or

stack pointer). The contents of these registers remain inde-

terminate, until initialized explicitly by the program.

2-13

STATUS

INFORMAT ION

Figure 2-11. HALT Timing

Figure 2 12. HALT Sequence Ftow Chart.

2-14

Figure 2-13. Reset.

Figure 2-14. Retation between H O L D and <NT in the HALT State.

2-15

MNEMONIC OP CODE M l i l l M2

Oy D 6 D 5 D 4 D 3 D 2 D 1 Do T1 T 2 M T3 T4 T5 T1 T2t21 T3

MOV r1,r2 0 1 0 D D S S S PC OUT

STATUS

PC -= PC +1 INST-*TMP/IR (SSSWTMP ITMP)-DDD

MOV r. M 0 1 0 D D 1 1 0 Xt3! HL OUT
STATUStSI

DATA —

MOV M. r 0 1 1 1 0 S S S ISSSI-TMP HL OUT
STATUS!?!

ITMP) — *-DATA BUS

SPHL 1 1 1 1 1 0 0 1 (HL) SP

MVI r, data 0 0 D D D 1 1 0 X PC OUT
STATUStS!

B2 - t - D D D D

MVI M.data 0 0 1 1 0 1 1 0 X B2 — t-TMP

LX I r p . d a t a 0 0 R P 0 0 0 1 X PC = PC+1 B2 —

LDA addr 0 0 1 1 1 0 1 0 X PC - PC + 1 82 —

ST A addr 0 0 1 1 0 0 1 0 X PC - PC + 1 B2 —

LHLDaddr 0 0 1 0 1 0 1 0 X P C = P C + 1 B2 — - z

SHLD addr 0 0 1 0 0 0 1 0 X PC OUT
STATUStol

P C = P C + 1 B2 — ̂ -z

LDAX r p M 0 0 R P 1 0 1 0 X
STATUSte!

D A T A — — A

ST AX r p M 0 0 R P 0 0) 0 X r p O U T
STATUS!?)

!A) *-DATA BUS

XCHG 1 1 1 0 1 0 1 1 t H L) ^ (D E)

A D D r 1 0 0 0 0 s s s tSSSI^TMP
t A W A C T

[91 (ACT)-KTMPWA

ADD M 1 0 0 0 0 1 1 0 (AWACT H L O U T
STATUStB)

D A T A - --TMP

A D I d a , a 1 1 0 0 0 1 1 0 (AWACT PC OUT
STATUStS]

PC = PC + 1 B2 ---TMP

ADC r 1 0 0 0 1 S S S (SSSWTMP
l A I ^ A C T

[91 IACT)+tTMP)+CY-^A

A D C M 1 0 0 0 1 1 1 0 (Ai-^ACT HL OUT

STATUS^]

D A T A - ^-TMP

AC Ida , a 1 1 0 0 1 1 1 0 (AWACT PC OUT
STATUS

PC =PC*+1 B 2 - *-TMP

s u a r 1 0 0 1 0 s s s (SSSWTMP
(A) ^ACT

[9] <ACT)-!TMP)-*A

SUB M 1 0 0 1 0 1 1 0 (A W A C T H L O U T
STATUS^ !

DATA— -*-TMP

SUI data 1 1 0 1 0 1 1 0 (A)-^ACT PC OUT
STATUStel

PC = PC + 1 B 5 - #-TMP

SBB r 1 0 0 1 1 s s s (SSSWTMP

iAi-^ACT
ta (ACT)-(TMP)-CY-A

SBB M 1 0 0 1 1 1 1 0 (A)^ACT H L O U T
STATUS^)

D A T A - --TMP

SBIdata 1 1 0 1 1 1 1 0 (A) ^ACT PC OUT
STATUStS

P C " PC + 1 B2— --TMP

INR r 0 0 D D D 1 0 0 (D D D W T M P
ITMPi + 1 ^ A L U

A L U - D D D

INR M 0 0 1 1 0 1 0 0 X H L O U T
STATUStS]

DATA
(TMP)+1 -

*-TMP

--ALU

DCR r 0 0 D D D 1 0 1 t D D D W T M P
(TMP)+1^ALU

ALU <DDD

DCR M 0 0 1 1 0 1 0 1 X HL OUT
STATUS'S

DATA —
(TMP)-I -

^ - T M P

ALU

INX rp 0 0 R P 0 0 1 1 (RP) + 1 , R P

DCX rp 0 0 R P 1 0 1 1 IRP) - 1 ^ R P

DAD r p M 0 0 R P 1 0 0 1 X (ri)-ACT (L)^TMP,

(ACT)+(TMP!-.ALU

ALU-^L, CY

DAA 0 0 1 0 0 1 1 1 D A A ^ A , FLAGSMO]

A N A r 1 0 1 0 0 S S s (SSS)-f-TMP
(AWACT

[9] (ACT)+ITMP)-A

A N A M 1 0 1 0 0 1 1 0 PC OUT

STATUS
PC = PC + 1 INST-tTMP/IR (AWACT H L O U T

STATUStS!
D A T A - *-TMP

2-16

M 3 M4 M5

T1 T 2 M T3 T1 T2i2 ! T3 T1 T 2 t a T3 T4 T5

H L O U T

STATUS!? !

(TMP) - --DATA BUS

PC O U T

S T A T U S ^ !

P C - P C + 1 B3 — --rh

PC = PC + 1 B3 — W Z O U T

S T A T U S ^ !

D A T A - A

PC - PC + 1 B 3 — --W WZ O U T

STATUSt? l

- DATA BUS

P C ^ P d B 3 - WZ OUT
STATUS16!

D A T A - L WZ OUT

STATUStS!

D A T A

PC OUT

S T A T U S i S

P C - P C + 1 B3 — --W W Z OUT

STATUS ! ' !

(L)

.*./ i

k DATA BUS W Z OUT

STATUS!? !

tH) - D A T A BUS

[9] (ACT)+tTMP)^A

[9] (ACT)+(TMP)-^A

[9! (ACT)+(TMP)+CY-^A

[9i (ACT!+(TMP)+CY-/ .

[91 (ACTI- (TMP)^A

[91)ACT)- (TMP) ^A

[9])ACT)-(TMP)-CY-A

[9])ACT i- (TMP)-CY^A

H L O U T

STATUS t?l

A L U - ^ - D A T A BUS

H L O U T

STATUS!? !

A L U — - D A T A BUS

[r h t ^ACT (H W T M P

(ACT}+(TMP)+CY^A LU
A L U ^ H , CY

19! (ACT)+(TMP)^A

2-17

MNEMONIC OP CODE M l t l ! M2

D? De D5 D4 D 3 D 2 D 1 Do T ! T 2 M T3 T4 T5 T1 T 2 M T3

AN, da,3 1 1 1 0 0 1 1 0 PC OUT
STATUS

P C - P C + 1 INST^TMP/IR (A) ^ACT PC OUT
STATUSlBl

P - P C . 1 S 3 - ^ .TMP

X R A r 1 0 1 0 1 s s s (A)-ACT
(SSSWTMP

[9] tACT)+(TPMWA

X R A M 1 0 1 0 1 1 1 0 (A) ^ACT HL OUT
STATUStS

DATA - - T M P

X R I d a t a 1 1 1 0 1 1 1 0 t A W A C T PC OUT
STATUStS!

P C - P C + 1 — TMP

O R A r 1 0 1 1 0 S S s (A W A C T

tSSSWTMP
[9])ACT)+(TMPHA

O R A M 1 0 1 1 0 1 1 0 tA t ^ACT H L O U T
STATUStS!

DATA - —TMP

OR I data 1 1 1 1 0 1 1 0 (AWACT PC OUT ^ P C - P C + 1 —TMP

CMP r 1 0 1 1 1 S s s (AWACT

tSSSI^TMP
[9] lACT)-(TMP). FLAGS

CMP M 1 0 1 1 1 1 1 0 (A) ^ACT HL OUT
STATUStS]

DATA — —TMP

CPI data 1 1 1 1 1 1 1 0)A)-*ACT PC OUT
STATUStS!

P C - P C + 1 B 2 - —TMP

RLC 0 0 0 0 0 1 1 1 t A W A L U
ROTATE

[9] A L U ^ A . CY

R R C 0 0 0 0 1 1 1 1 t A W A L U
ROTATE

[9] A L U ^ A , CY

R A L 0 0 0 1 0 1 1 1 fAi. C Y ^ A L U
ROTATE

[9] A L U ^ A . CY

R A R 0 0 0 1 1 1 1 1 (A), C Y ^ A L U
ROTATE

[91 A L U - A . CY

CMA 0 0 1 0 1 1 1 1 (A) ^A

CMC 0 0 1 1 1 1 1 1 C Y ^ C Y

STC 0 0 1 1 0 1 1 1 W C Y

JMPaddr 1 1 0 0 0 0 1 1 PC OUT
STATUStS.'

PC^ P C I — Z

J cond addr [I?! 1 1 C C C 0 1 0 JUDGE CONDIT ION PC OUT
STATUS^]

P C - P C + 1 — z

CALL addr 1 1 0 0 1 1 0 1 S P - S P - 1 PC OUT
STATUStS!

P C - P C + 1 B2 - — z

C cond addrti?] 1 1 C C C 1 0 0 JUDGE CONDITION
IF T R U E . S P - S P - 1

PC OUT
STATUStS]

P C - P C + 1 B2 — — z

RET 1 1 0 0 1 0 0 1
*

SP OUT
S T A T U S ! ^ !

S P - S P + 1 DATA — — z

R cond addrti 7] 1 1 C C C 0 0 0 INST-TMP/IR JUOGE CONDIT IONt lH SP OUT
S T A T U S ^]

S P - S P + 1 DATA — — z

RST n 1 1 M N N 1 1 1

INST^TMP/IR
SP - SP - 1 SP OUT

STATUSES]
S P - S P - 1 (PCH) — — DATA BUS

PCHL 1 1 1 0 1 0 0 1 INST-^TMP/IR tHL) - P C

PUSH rp 1 1 R P 0 1 0 1 S P - S P - 1 SP OUT
STATUSES]

S P - S P - 1 Irh)— — D A T A BUS

PUSH PSW 1 1 1 1 0 1 0 1 S P - S P - 1 SP OUT
STATUSES]

S P - S P - 1 (A) — — D A T A BUS

POP rp 1 1 R P 0 0 0 1 A SP OUT
STATUSES]

S P - S P + 1 DATA — - r 1

POP PSW 1 1 1 1 0 0 0 1 * SP OUT
S T A T U S ^]

S P - S P + 1 DATA — — FLAGS

XTHL 1 1 1 0 0 0 1 1 X SP OUT
STATUSHS!

S P - S P + 1 D A T A - — Z

IN port 1 1 0 1 1 0 1 1 X PC OUT
STATUStS!

P C - P C + 1 B2 — — Z . W

O U T p o r , 1 1 0 1 0 0 1 1 X FC OUT
STATUSt6!

P C - P C + 1 B 2 - — z , w

El 1 1 1 1 1 0 1 1 SET INTE F/F

Dl 1 1 1 1 0 0 1 1 RESET INTE F/F

HLT 0 1 1 1 0 1 1 0

i

X PC OUT
STATUS

H A L T M O D E ^ t

NOP 0 0 0 0 0 0 0 0 PC OUT

STATUS

P C - P C + 1 INST-+TMP/IR X

!
/

2-18

M 3 M 4 M5

T1 T 2 t a T3 T1 T 2 t a T3 T1 T 2 t a T3 T4 T5

[9] (ACT)+tTMPWA

[9] (ACT)+(TMP)-^A

[9] (ACT)+(TMP)-A

[9 (ACT)+(TMP)-A

[9! (ACT)+(TMP)-A

19) (ACT)-(TMP); F L A G S

[9] (ACT)-(TMP); F L A G S

PC OUT

S T A T U S ^ !

P C - P C + 1 B3 - W WZ OUT

S T A T U S ! " !

IWZ i + 1 ^ PC

PC O U T

S T A T U S ^ !

P C - P C + 1 B3 — W WZ O U T
S T A T U S t " . ' 2 !

(WZ) + 1 ^ PC

PC O U T

S T A T U S ^]

P C - P C + 1 B3 — w S P O U T

S T A T U S t S)

IPCH) — D A T A BUS S P O U T

STATUSES]

(PCLi < - D A T A BUS W Z O U T

S T A T U S ^]

(WZ) + 1 PC

PC O U T

STATUStS!
P C - P C + 1 B3 SP OUT

STATUSES]
(PCH)

S P - S P - 1

— DATA BUS SP OUT

STATUSES]

tPCL)--< - D A T A BUS W Z O U T

S T A T U S ! " . ! ?]

(WZ) + 1 ^ PC

S P O U T

STATUSES]
S P - S P + 1 D A T A W Z OUT

S T A T U S U H

(WZ) + 1 ^ PC

SP OUT
STATUSES]

S P - S P + 1 D A T A - i - W W Z O U T

S T A T U S ^ . H !

(WZ) + 1 - PC

S P O U T
STATUSES)

(TMP - OONNNOOOi

(PCL)

— z

- L A T A BUS

W Z O U T

S T A T U S ^ !

IWZ) + 1 PC

S P O U T

STATUSES !
(r !)-- — D A T A BUS

SP OUT
STATUSES]

F L A G S l - D A T A B U S

S P O U T

S T A T U S ^)

S P - S P + 1 D A T A —rh

S P O U T
STATUSES]

S P - S P + 1 D A T A — A

S P O U T

STATUSES]

D A T A - W S P O U T

STATUSES !

(H) - D A T A BUS S P O U T

STATUSES]

(L) - D A T A BUS (WZ) - — HL

W Z O U T

STATUSES]

D A T A — A

W Z O U T

STATUSES]

(A) - — DSTA BUS

2-19

NOTES:

1. The first memory cycle (IV) 1) !s atways an instruction

fetch; the first (or only) byte, containing the op code, is

fetched during this cycle.

2. If the R E A D Y input f rom memory is not high during

T2 of each memory cycle, the processor will enter a wait

state (TW) until R E A D Y is sampled as high.

3. States T4 and T5 are present, as required, for opera-

tions which are completely interna) to the CPU. The con-

tents of the internal bus during T4 and T5 are available at

the data bus; this is designed for testing purposes only. An

" X " denotes that the state is present, but is only used for

such internal operations as instruction decoding.

4. Only register pairs rp = B (registers B and C) or r p= D

(registers D and E) may be specified.

5. These states are skipped.

6. Memory read sub-cycles; an instruction or data word

will be read.

7. Memory write sub-cycle.

8. The R E A D Y signal is not required during the second

and third sub-cycles (M2and M3). The H O L D signal is

accepted during M2 and M3. The SYNC signal is not gene-

rated during M2 and M3. During the execution of DAD ,

M2 and M3 are required for an internal register-pair add;

memory is not referenced.

9. The results of these arithmetic, logical or rotate in-

structions are not moved into the accumulator (A) until

state T2 of the next instruction cycle. That is, A is loaded

while the next instruction is being fetched; this overlapping

of operations allows for faster processing.

10. If the value of the least significant 4-bits of the accumu-

lator is greater than 9 of if the auxiliary carry bit is set, 6

is added to the accumulator. If the value of the most signifi-

cant 4-bits of the accumulator is now greater than 9, or if

the carry bit is set, 6 is added to the most significant

4-bits of the accumulator.

11. This represents the first sub-cycte (the instruction

fetch) of the next instruction cycle.

12. t^ the condit ion was met, the contents of the register

pair WZ are output on the address lines (Ao-15) instead of

the contents of the program counter (PC).

13. If the condit ion was not met, sub-cycles M4 and M5

are skipped; the processor instead proceeds immediately to

the instruction fetch (M1) of the next instruction cycle.

14. if the condit ion was not met, sub-cycles M2 and M3

are skipped; the processor instead proceeds immediately to

the instruction fetch (M1)o f the next instruction cycle.

15. Stack read sub-cycle.

16. Stack write sub-cycle.

CONDIT ION CCC

NZ — not zero (Z = 0) 000

Z - zero (Z = 1) 001

NC - no carry (CY = 0) 010

C - carry (C Y = 1) 011

PO - parity odd (P = 0) 100

PE — parity even (P = 1) 101

P - plus (S = 0) 110

M — minus (S = 1) 111

18. I/O sub-cycle: the I/O port's 8-bit select code is dupli-

cated on address lines 0-7 (A0.7) and 8-15 (Ag.15).

19. Outpu t sub-cycle.

20. The processor will remain idle in the halt state until

an interrupt, a reset or a hold is accepted. When a hold re-

quest is accepted, the CPU enters the hold mode; after the

hold mode is terminated, the processor returns to the halt

state. After a reset is accepted, the processor begins execu-

tion at memory location zero. After an interrupt is accepted,

the processor executes the instruction forced onto the data

bus (usually a restart instruction).

SSS or D D D Value rp Value

A 111 B 00

B 000 D 01

C 001 H 10

D 010 SP 11

E 011

H 100

L 101

2-20

This chapter witl illustrate, in detail, how to interface

the 8080 CPU with Memory and I/O. It will also show the

benefits and tradeoffs encountered when using a variety of

system architectures to achieve higher throughput, de-

creased component count or minimization of memory size.

8080 Microcomputer system design lends itself to a

simple, modular approach. Such an approach will yield the

designer a reliable, high performance system that contains a

min imum component count and is easy to manufacture and

maintain.

The overall system can be thought of as a simple

block diagram. The three (3) blocks in the diagram repre-

sent the functions common to any computer system.

CPU Modu le* Contains the Central Processing Unit , system

timing and interface circuitry to Memory

and I/O devices.

Memory Contains Read Only Memory (ROM) and

Read/Write Memory (RAM) for program and

data storage.

! / 0 Contains circuitry that allows the computer

system to communicate with devices or

structures existing outside of the CPU or

Memory array.

for example: Keyboards, Floppy Disks,

Paper Tape, etc.

There are three busses that interconnect these blocks:

Data Bust A bi-directional path on which data can flow

between the CPU and Memory or I/O.

Address Bus A uni directional group of lines that identify

a particular Memory location or I/O device.

* "Modu l e " refers to a functional block, it does not ref-

erence a printed circuit board manufactured by INTEL.

f ' B u s " refers to a set of signals grouped together because

of the similarity of their functions.

Controt Bus A uni directional set of signals that indicate

the type of activity in current process.

Type of activities: 1. Memory Read

2. Memory Write

3. I/O Read

4. I/O Write

5. Interrupt Acknowledge

Figure 3-1. Typical Computer System Btock Diagram

Basic System Operation

1. The CPU Module issues an activity command on the

Controt Bus.

2. The CPU Module issues a binary code on the Address

Bus to identify which particular Memory location or

I/O device will be involved in the current process

activity.

3. The CPU Module receives or transmits data with the

selected Memory location or I/O device.

4. The CPU Module returns to (T) and issues the next

activity command.

It is easy to see at this point that the CPU module is

the central element in any computer system.

3-1

The following pages will cover the detailed design of

the CPU Module with the 8080. The three Busses (Data,

Address and Control) will be developed and the intercon-

nection to Memory and I/O will be shown.

Design philosophies and system architectures pre-

sented in this manual are consistent with product develop-

ment programs underway at INTEL for the MCS-80. Thus,

the designer who uses this manual as a guide for his total

system engineering is assured that all new developments in

components and software for MCS-80 from iNTEL will be

compatible with his design approach.

CPU Modute Design

The CPU Module contains three major areas:

1. The 8080 Central Processing Unit

2. A Clock Generator and High Level Driver

3. A bi-directional Data Bus Driver and System Control

Logic

The following will discuss the design of the three

major areas contained in the CPU Module. This design is

presented as an alternative to the Intel^ 8224 Clock Gener-

ator and Intel 8228 System Controller. By studying the

alternative approach, the designer can more clearly see the

considerations involved in the specification and engineering

of the 8224 and 8228. Standard TTL components and Intel

general purpose peripheral devices are used to implement

the design and to achieve operational characteristics that

are as close as possible to those of the 8224 and 8228.

Many auxiliary t iming functions and features of the 8224

and 8228 are too complex to practically implement in

standard components, so only the basic functions of the

8224 and 8228 are generated. Since significant benefits in

system timing and component count reduction can be

realized by using the 8224 and 8228, this is the preferred

method of implementation.

1. 8080 CPU

The operation of the 8080 CPU was covered in pre-

vious chapters of this manual, so tittle reference will

be made to it in the design of the Module.

2. Ctock Generator and High Levet Driver

The 8080 is a dynamic device, meaning that its inter-

nal storage elements and logic circuitry require a

timing reference (Clock), supplied by external cir-

cuitry, to refresh and provide t iming control signals.

The 8080 requires two (2) such Clocks. Their wave-

forms must be non-overlapping, and comply with the

timing and levels specified in the 8080 A.C. and D.C.

Characteristics, page 5-15.

Ctock Generator Design

The Clock Generator consists of a crystal controlled.

+ 5 V

^ 2)

SYSTEM DMA REQ .

a

RESET

A12

Figure 3-2. 8080 CPU interface

2-2

OSCILLATOR

Figure 3 3. 8080 Ciock Generator

20 MHZ oscillator, a four bit counter, and gating

circuits.

The oscillator provides a 20 MHZ signal to the input

of a four (4) bit, presettable, synchronous, binary

counter. By presetting the counter as shown in figure

3-3 and clocking it with the 20 MHZ signal, a simple

decoding of the counters outputs using standard TTL

gates, provides proper timing for the two (2) 8080

clock inputs.

Note that the timing must actually be measured at

the output of the High Level Driver to take into ac-

count the added delays and waveform distortions

within such a device.

High Leve! Driver Design

The voltage level of the clocks for the 8080 is not

TTL compatible like the other signals that input to

the 8080. The voltage swing is from .6 volts (V , ^)

to 11 volts (V ^ c) with risetimes and falitimes under

50 ns. The Capacitive Drive is 20 pf (max.). Thus, a

High Level Driver is required to interface the outputs

of the Clock Generator (TTL) to the 8080.

The two (2) outputs of the Clock Generator are ca-

pacitivity coupled to a dual- High Level clock driver.

The driver must be capable of complying with the

8080 clock input specifications, page 5-15. A driver

of this type usually has little problem suppiying the

positive transition when biased from the 8080 V p o

supply (12V) but to achieve the low voltage specifi-

cation (V i L c) . 8 volts Max. the driver is biased to the

8080 VgB supply (-5V). This allows the driver to

swing from G N D to V p o with the aid of a simple

resistor divider.

A low resistance series network is added between the

driver and the 8080 to eliminate any overshoot of the

pulsed waveforms. Now a circuit is apparent that can

easily comply with the 8080 specifications. In fact

rise and falitimes of this design are typically less than

10ns.

4 7 ! !

-AMr—*

47 n

- W W *

) 8 080 P IN 22)

<̂2

[8080 P IN 15)

Figure 3-4. High Levei Driver

2-3

Auxii iary Timing Signats and Functions

The Clock Generator can also be used to provide

other signals that the designer can use to simplify

large system timing or the interface to dynamic

memories.

Functions such as power-on reset, synchronization of

externa] requests (HOLD , R E A D Y , etc.) and single

step, could easily be added to the Clock Generator to

further enhance its capabilities.

For instance, the 20 MHZ signal from the oscillator

can be buffered so that it could provide the basis for

communicat ion baud rate generation.

The Clock Generator diagram also shows how to gen-

erate an advanced timing signal (01A) that is handy

to use in clocking " D " type flipflops to synchronize

external requests. It can also be used to generate a

strobe (STSTB) that is the latching signal for the sta-

tus information which is available on the Data Bus at

the beginning of each machine cycle. A simple gating

of the SYNC signal from the 8080 and the advanced

(01 A) will do the job. See Figure 3-3.

Bi-Directionai Bus Driver and System Controi Logic

The system Memory and I/O devices communicate

with the CPU over the bi-directional Data Bus. The

system Control Bus is used to gate data on and off

the Data Bus within the proper timing sequences as

dictated by the operation of the 8080 CPU. The data

lines of the 8080 CPU, Memory and I/O devices are

3-state in nature, that is, their output drivers have

the ability to be forced into a high-impedance mode

and are, effectively, removed from the circuit. This 3 -

state bus technique allows the designer to construct a

system around a single, eight (8) bit parallel, bi-direc-

tional Data Bus and simply gate the information on

or off this bus by selecting or deselecting (3-stating)

Memory and I/O devices with signals from the Con-

trol Bus.

Bi-Directionai Data Bus Driver Design

The 8080 Data Bus (D7-D0) has two (2) major areas

of concern for the designer:

1. Input Voltage level (V ^) 3.3 volts m in imum.

2. Ou tpu t Drive Capability (lot.) 1-7 rnA maximum.

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

] MEM R

Figure 3-5. 8080 System Controi

2-4

The input level specification implies that any semi-

conductor memory or I/O device connected to the

8080 Data Bus must be able to provide a min imum of

3.3 volts in its high state. Most semiconductor mem-

ories and standard TTL I/O devices have an output

capability of between 2.0 and 2.8 volts, obviously a

direct connection onto the 8080 Data Bus would re-

quire pullup resistors, whose value should not affect

the bus speed or stress the drive capability of the

memory or I/O components.

The 8080A output drive capability (l o U l-9mA max.

is sufficient for small systems where Memory size and

I/O requirements are minimal and the entire system is

contained on a single printed circuit board. Most sys-

tems however, take advantage of the high-perfor-

mance computing power of the 8080 CPU and thus a

more typical system would require some form of buf-

fering on the 8080 Data Bus to support a larger array

of Memory and I/O devices which are likely to be on

separate boards.

A device specifically designed to do this buffering

function is the INTEt f 8216, a (4) four bit bi-direc-

tional bus driver whose input voltage level is compat-

ible with standard TTL devices and semiconductor

memory components, and has output drive capability

of 50 mA. At the 8080 side, the 8216 has a "h igh "

output of 3.65 volts that not only meets the 8080

input spec but provides the designer with a worse case

350 mV noise margin.

A pair of 8216's are connected directly to the 8080

Data Bus (D7-D0) as shown in figure 3-5. Note that

the DBIN signal from the 8080 is connected to the

direction control input (DIEN) so the correct flow of

data on the bus is maintained. The chip select (CS) of

the 8216 is connected to BUS ENABLE (BUSEN) to

allow for DMA activities by deselecting the Data Bus

Buffer and forcing the outputs of the 8216's into

their high impedance (3-state) mode. This allows

other devices to gain access to the data bus (DMA).

System Control Logic Design

The Control Bus maintains discipline of the bi-direc-

tional Data Bus, that is, it determines what type of

device will have access to the bus (Memory or I/O)

and generates signals to assure that these devices

transfer Data with the 8080 CPU within the proper

timing "windows" as dictated by the CPU operational

characteristics.

As described previously, the 8080 issues Status infor-

mation at the beginning of each Machine Cycle on its

Data Bus to indicate what operation will take place

during that cycle. A simple (8) bit latch, like an

INTEL? 8212, connected directly to the 8080 Data

Bus (D7-D0) as shown in figure 3-5 wit! store the

Status information. The signal that loads the data

into the Status Latch comes from the Clock Gener-

ator, it is Status Strobe (STSTB) and occurs at the

start of each Machine Cycle.

Note that the Status Latch is connected onto the

8080 Data Bus (D7-D0) before the Bus Buffer. This is

to maintain the integrity of the Data Bus and simplify

Control Bus timing in DMA dependent environments.

As shown in the diagram, a simple gating of the out-

puts of the Status Latch with the DBIN and WR

signals from the 8080 generate the (4) four Control

signals that make up the basic Control Bus.

These four signals: 1. Memory Read (MEM R)

2. Memory Write (MEM W)

3. I/O Read (l/0*R)

4. I/O Write (I /O W)

connect directly to the MCS-80 component " f ami ly "

of ROMs, RAMs and I/O devices.

A fifth signal, Interrupt Acknowledge (INTA) is

added to the Control Bus by gating data off the

Status Latch with the DBIN signal from the 8080

CPU. This signal is used to enable the Interrupt

Instruction Port which holds the RST instruction

onto the Data Bus.

Other signals that are part of the Control Bus such as

WO, Stack and M1 are present to aid in the testing of

the System and also to simplify interfacing the CPU

to dynamic memories or very large systems that re-

quire several levels of bus buffering.

Address Buffer Design

The Address Bus (A15-A0) of the 8080, like the Data

Bus, is sufficient to support a small system that has a

moderate size Memory and I/O structure, confined to

a single card. To expand the size of the system that

the Address Bus can support a simple buffer can be

added, as shown in figure 3-6. The INTE t f 8212 or

8216 is an excellent device for this function. They

provide low input loading (.25 mA) , high output

drive and insert a minimal delay in the System

Timing.

Note that BUS ENABLE (BUSEN) is connected to

the buffers so that they are forced into their high-

impedance (3-state) mode during DMA activities so

that other devices can gain access to the Address Bus.

2-5

!NTERFAC!NG THE 8080 CPU TO MEMORY

AND !/0 DEVtCES

The 8080 interfaces with standard semiconductor

Memory components and) /0 devices. In the previous text

the proper control signals and buffering were developed

which will produce a simple bus system similar to the basic

system example shown at the beginning of this chapter.

In Figure 3-6 a simple, but exact 8080 typical system

is shown that can be used as a guide for any 8080 system,

regardless of size or complexity. It is a "three bus " archi-

tecture, using the signals developed in the CPU module.

Note that Memory and I/O devices interface in the

same manner and that their isolation is only a funct ion of

the definition of the Read-Write signals on the Control Bus.

This allows the 8080 system to be configured so that Mem-

ory and i/O are treated as a single array (memory mapped

I/O) for small systems that require high thruput and have

less than 32K memory size. This approach will be brought

out later in the chapter.

ROM tNTERFACE

A ROM is a device that stores data in the form of

Program or other information such as "look-up tables" and

is only read from, thus the term Read Only Memory. This

type of memory is generally non-volatile, meaning that

when the power is removed the information is retained.

This feature eliminates the need for extra equipment like

tape readers and disks to load programs initially, an im-

portant aspect in small system design.

Interfacing standard ROMs, such as the devices shown

in the diagram is simple and direct. The output Data lines

are connected to the bi-directional Data Bus, the Address

inputs tie to the Address bus with possible decoding of the

most significant bits as "chip selects" and the MEMR signal

from the Control Bus connected to a "chip select" or data

buffer. Basically, the CPU issues an address during the first

portion of an instruction or data fetch (T1 & T2). This

value on the Address Bus selects a specific location within

the ROM, then depending on the ROM's delay (access time)

the data stored at the addressed location is present at the

Data output lines. At this t ime (T3) the CPU Data Bus is

in the " input Mode" and the control logic issues a Memory

Read command (MEMR) that gates the addressed data on

to the Data Bus.

RAM iNTERFACE

A RAM is a device that stores data. This data can be

program, active "look-up tables," temporary values or ex-

ternal stacks. The difference between RAM and ROM is

that data can be written into such devices and are in

essence, Read/Write storage elements. RAMs do not hold

their data when power is removed so in the case where Pro-

gram or "look-up tables" data is stored a method to load

STSTB CLOCK 8224

G E N E R A T O R

A N D DR IVER

SYNC <̂1 I

R D Y 8080ACPU

WR D0-D7 DBIN HLDA

n

SYSTEM

CONTROLLER

I 8212 ADDRESS

II BUFFERS/ I
I DECODER I

(^8216 (OPTIONAL) j

8702A 8302

8704 ROMs 8308

8708 8316A

8101 2 8102A-4

8111-2 RAMs
8107B-4

8210

8102 2 5101 8222

DATA BUS (8)

1 1
CONTROL BUS (6)

u
ADDRESS BUS (16)

I/O
COMMUNICATION

INTERFACE

A

8212
I/O

8255 PER IPHERAL
INTERFACE

8214

8 2 1 2
P R I O R I T Y

INTERRUPT

Figure 3-6. Microcomputer System

2-6

R A M memory must be provided, such as: F loppy Disk,

Paper Tape, etc.

The CPU treats R A M in exactly the same manner as

R O M for addressing data to be read. Writ ing data is very

similar; the R A M is issued an address during the first por-

t ion of the Memory Write cycle (T1 & T2) in T3 when the

data that is to be written is ou tpu t by the CPU and is stable

on the bus an M E M W command is generated. The M E M W

signal is connected to the R /W input of the R A M and

strobes the data into the addressed location.

tn Figure 3-7 a typical Memory system is illustrated

t o show how standard semiconductor componen ts interface

t o the 8080 bus. The memory array shown has 8K bytes

(8 bits/byte) of R O M storage, using four !n te)^8216As

and 512 bytes o f R A M storage, using Intel 8111 static

RAMs. The basic interface to the bus structure detailed

here is c o m m o n to almost any size memory . The only ad-

di t ion that might have t o be made for larger systems is

more buffers (8216/8212) and decoders (8205) for gener-

ating "ch ip selects."

The memories chosen for this example have an access

t ime of 850 nS (max) to illustrate tha t slower, economical

devices can be easily interfaced to the 8080 wi th little ef-

fect on performance. When the 8080 is operated f rom a

clock generator wi th a t C Y of 500 nS the required memory

access t ime is Approx . 450-550 nS. See detailed t iming

specification Pg. 5-16. Using memory devices of this speed

such as intel^8308, 8102A , 8107A , etc. the R E A D Y inpu t

to the 8080 CPU can remain " h i g h " because no " w a i t "

states are required. Note that the bus interface to memory

shown in Figure 3-7 remains the same. However, if slower

memories are to be used, such as the devices illustrated

(8316A , 8111) that have access t imes slower than the min-

imum requirement a simple logic control of the R E A D Y

input to the 8080 CPU will insert an extra "wa i t s ta te" tha t

is equal to one or more clock periods as an access t ime

" ad j u s tmen t " delay to compensate. The effect of the extra

" w a i t " state is naturally a slower execut ion t ime for the

instruction. A single " w a i t " changes the basic instruction

cycle to 2.5 microSeconds.

8K + 512 8K 0

MEMORY MAP

ROM

CONTROL BUS (6)

ADDRESS BUS (16)

Figure 3 7. Typica! Memory interface

2-7

)/0 INTERFACE

Genera! Theory

As in any computer based system, the 8080 CPU must

be ab)e to communicate with devices or structures that exist

outside its normal memory array. Devices like keyboards,

paper tape, f loppy disks, printers, displays and other control

structures are used to input information into the 8080 CPU

and display or store the results of the computat ional activity.

Probably the most important and strongest feature of

the 8080 Microcomputer System is the flexibility and power

of its I/O structure and the components that support it. There

are many ways to structure the I/O array so that it wilt " f i t "

the total system environment to maximize efficiency and

minimize component count.

The basic operation of the I/O structure can best be

viewed as an array of single byte memory locations that can

be Read from or Written into. The 8080 CPU has special in-

structions devoted to managing such transfers (IN, OUT).

These instructions generally isolate memory and I/O arrays

so that memory address space is not effected by the I/O

structure and the genera) concept is that of a simple transfer

to or from the Accumulator with an addressed " P O R T " . An-

other method of I/O architecture is to treat the I/O structure

as part of the Memory array. This is generally referred to as

"Memory Mapped I /O " and provides the designer with a

powerful new "instruction set" devoted to I/O manipulat ion.

ISOLATED I/O

MEMORY MAPPED I/O

SYSTEM

CONTROL

)8228)

MEMW

I/O R

- I/OW

TO MEMORY

DEVICES

TO I/O DEVICES

Figure 3-9. ! so)a ted) /0 .

Memory Mapped !/0

By assigning an area of memory address space as I/O a

powerful architecture can be developed that can manipulate

I/O using the same instructions that are used to manipulate

memory locations. Thus, a " n e w " instruction set is created

that is devoted to) /0 handling.

As shown in Figure 3-10, new control signals are gene-

rated by gating the MEMR and MEMW signals with A15, the

most significant address bit. The new I/O control signals con-

nect in exactly the same manner as Isolated I/O, thus the

system bus characteristics are unchanged.

By assigning A15 as the I/O " f lag" , a simple method of

I/O discipline is maintained:

If A15 is a "zero" then Memory is active.

If A15 is a " o n e " then I/O is active.

Other address bits can also be used for this funct ion. A15 was

chosen because it is the most significant address bit so it is

easier to control with software and because it still allows

memory addressing of 32K.

I/O devices are stitl considered addressed "por ts" but

instead of the Accumulator as the only transfer medium any

of the internal registers can be used. All instructions that

could be used to operate on memory locations can be used

in I/O.

Figure 3-8. Memory/ i /O Mapping.

!so!ated)/0

In Figure 3-9 the system control signals, previously de-

tailed in this chapter, are shown. This type of I/O architecture

separates the memory address space from the I/O address

space and uses a conceptually simple transfer to or from Ac-

cumulator technique. Such an architecture is easy to under-

stand because I/O communicates only with the Accumulator

using the IN or OUT instructions. Also because of the isola-

tion of memory and I/O, the full address space (65K) isun-

effected by I/O addressing.

Examples:

MOVr, M (Input Port to any Register)

MOV M, r (Output any Register to Port)

MVI M (Output immediate data to Port)

LDA (input to ACC)

STA (Output from ACC to Port)

LHLD (16 Bit Input)

SHLD (16 Bit Output)

A D D M (Add Port to ACC)

A N A M (" A N D " Port with ACC)

It is easy to see that from the list of possible " n e w "

instructions that this type of I/O architecture could have a

drastic effect on increased system throughput. It is concep-

tually more difficult to understand than Isolated I/O and it

does limit memory address space, but Memory Mapped)/0

can mean a significant increase in overall speed and at the

same t ime reducing required program memory area.

2-8

Figure 3-10. Memory Mapped) /0 .

!/0 Addressing

With both systems of I/O structure the addressing of

each device can be configured to optimize efficiency and re-

duce component count. One method, the most common , is

to decode the address bus into exclusive "chip selects" that

enable the addressed I/O device, similar to generating chip-

selects in memory arrays.

Another method is called "linear select". In this method,

instead of decoding the Address Bus, a singular bit from the

bus is assigned as the exclusive enable for a specific I/O de-

vice. This method, of course, limits the number of I/O de-

vices that can be addressed but eliminates the need for extra

decoders, an important consideration in small system design.

A simple example illustrates the power of such a flexi-

ble I/O structure. The first example illustrates the format of

the second byte of the IN or OUT instruction using the Iso-

lated I/O technique. The devices used are lntel^8255 Pro-

grammable Peripheral Interface units and are linear selected.

Each device has three ports and from the format it can be

seen that six devices can be addressed wi thout additional de-

coders.

EXAMPLE #1

A7 Ae As A4 A3 A, Ai Ao

L
PORT SELECTS

- DEVICE SELECTS

A D D R E S S E S - 6 - 8 2 5 5 s

118 PORTS - 144 BITS)

The second example uses Memory Mapped I/O and

linear select to show how thirteen devices (8255) can be ad-

dressed wi thout the use of extra decoders. The format shown

could be the second and third bytes of the LDA or STA in-

structions or any other instructions used to manipulate I/O

using the Memory Mapped technique.

It is easy to see that such a flexible I/O structure, that

can be " ta i lored" to the overall system environment, provides

the designer with a powerful tool to optimize efficiency and

minimize component count.

EXAMPLE #2

A7 Ae As A4 A3 A, Ai Ao

L
PORT SELECTS

- DEVICE SELECTS

DEVICE SELECTS

I/O FLAG
= I/O
= MEMORY

ADDRESSES - 13 -8255s

(39 P O R T S - 3 1 2 BITS)

Figure 3 11. !soiated t/O - (Linear Setect) (8255)

Figure 3-12. Memory Mapped ! / 0 - (Linear Setect (8255)

!/0 interface Exampte

tn Figure 3-16 a typicai t/O system is shown that uses a

variety of devices (8212, 8251 and 8255). It could be used

to interface the peripherals around an intelligent CRT termi-

nals; keyboards, display, and communicat ion interface. An-

other application could be in a process controller to interface

sensors, relays, and motor controls. The limitation of the ap-

plication area for such a circuit is sotely that of the designers

imagination.

The I/O structure shown interfaces to the 8080 CPU

using the bus architecture developed previously in this chap-

ter. Either Isolated or Memory Mapped techniques can be

used, depending on the system I/O environment.

The 8251 provides a serial data communicat ion inter-

face so that the system can transmit and receive data over

communicat ion links such as telephone lines.

2-9

0 0 0 A 4 1 X

L C/D CONTROL

8251 SELECT

(ACTIVE LOW)

0 - DATA

1 - COMMAND

Figure 3-13. 8251 Format.

The two (2) 8255s provide twenty four bits each of

programmable I/O data and control so that keyboards, sen-

sors, paper tape, etc., can be interfaced to the system.

The three 8212s can be used to drive long lines or LED

indicators due to their high drive capability. (15mA)

8212#1 SELECT

(ACTIVE HIGH)

8212#2 SELECT

(ACTIVE HIGH)

8212#3 SELECT

(ACTIVE HIGH)

Figure 3-15. 8212 Format .

0 0 0 1 A3 A, Ai Ao

-PORT SELECT

0 0 - P O R T A

0 1 - P O R T B

1CI-PORTC

11 - COMMAND

8255 #1 SELECT

(ACTIVE LOW)

8256 #2 SELECT

(ACTIVE LOW)

Figure 3-14. 8255 Format.

Addressing the structure is described in the formats il-

lustrated in Figures 3-13, 3-14, 3-15. Linear Setect is used so

that no decoders are required thus, each device has an ex-

clusive "enable b i t " .

The example shows how a powerful yet flexible I/O

structure can be created using a m in imum component count

with devices that are all members of the 8080 Microcomputer

System.

Figure 3-16. Typical ! / 0 interface.

2-10

A computer, no matter how sophisticated, can only

do what it is " t o l d " to do. One "tel ls" the computer what

to do via a series of coded instructions referred to as a Pro-

gram. The realm of the programmer is referred to as Soft-

ware, in contrast to the Hardware that comprises the actual

computer equipment. A computer's software refers to all of

the programs that have been written for that computer.

When a computer is designed, the engineers provide

the Central Processing Unit (CPU) with the ability to per-

form a particular set of operations. The CPU is designed

such that a specific operation is performed when the CPU

control logic decodes a particular instruction. Consequently,

the operations that can be performed by a CPU define the

computer's instruction Set.

Each computer instruction allows the programmer to

initiate the performance of a specific operation. All com-

puters implement certain arithmetic operations in their in-

struction set, such as an instruction to add the contents of

two registers. Often logical operations (e.g., O R the con-

tents of two registers) and register operate instructions (e.g.,

increment a register) are included in the instruction set. A

computer's instruction set will also have instructions that

move data between registers, between a register and memory,

and between a register and an I/O device. Most instruction

sets also provide Condit ionai instructions. A conditional

instruction specifies an operation to be performed only if

certain conditions have been met; for example, j ump to a

particular instruction if the result of the last operation was

zero. Conditional instructions provide a program with a

decision-making capability.

By logically organizing a sequence of instructions into

a coherent program, the programmer can " te l l " the com-

puter to perform a very specific and useful funct ion.

The computer, however, can only execute programs

whose instructions are in a binary coded form (i.e., a series

of 1's and O's), that is called Machine Code. Because it

would be extremely cumbersome to program in machine

code, programming languages have been developed. There

are programs available which convert the programming lan-

guage instructions into machine code that can be inter-

preted by the processor.

One type of programming language is Assembly Lan-

guage. A unique assembly language mnemonic is assigned to

each of the computer's instructions. The programmer can

write a program (called the Source Program) using these

mnemonics and certain operands; the source program is

then converted into machine instructions (called the Object

Code). Each assembly language instruction is converted into

one machine code instruction (1 or more bytes) by an

Assembier program. Assembly languages are usually ma-

chine dependent (i.e., they are usually able to run on only

one type of computer).

THE 8080 !NSTRUCT)ON SET

The 8080 instruction set includes five different types

of instructions:

* Data Transfer Group —move data between registers

or between memory and registers

* Ari thmet ic Group — add, subtract, increment or

decrement data in registers or in memory

. Logicai Group - A N D , O R , EXCLUS iVE-OR ,

compare, rotate or complement data in registers

or in memory

* Branch Group — conditional and uncondit ionai

j ump instructions, subroutine call instructions and

return instructions

* Stack,) /0 and Machine Contro) Group — inctudes

i/O instructions, as weil as instructions for main-

taining the stack and interna) control flags.

tnstruction and Data Formats:

Memory for the 8080 is organized into 8-bit quanti-

ties, called Bytes. Each byte has a unique 16-bit binary

address corresponding to its sequential position in memory.

4-1

The 8080 can directly address up to 65,536 bytes of mem-

ory, which may consist of both read-only memory (ROM)

elements and random-access memory (RAM) elements (read/

write memory).

Data in the 8080 is stored in the form of 8-bit binary

integers:

DATA W O R D

D^ ' Dg ' D5 ' D4 ' D3 ' D2 ' D i ' D o

MSB LSB

When a register or data word contains a binary num-

ber, it is necessary to establish the order in which the bits

of the number are written, in the intel 8080, B)T 0 is re-

ferred to as the Least Significant Bit (LSB), and BIT 7 (of

an 8 bit number) is referred to as the Most Significant Bit

(MSB).

The 8080 program instructions may be one, two or

three bytes in length. Multiple byte instructions must be

stored in successive memory locations; the address of the

first byte is always used as the address of the instructions.

The exact instruction format will depend on the particular

operation to be executed.

Single Byte Instructions

Byte One

Byte Two

Byte One

Byte Two

! I I ! I

Two-Byte Instructions

D ,
) I t ! !

' D o

D ,
t i l) !

' D o

Three-Byte Instructions

D 7 '
!) I I I

' D o

D?
I ! I I I

' D o

D?
) ! I I I

' D o

Op Code

Op Code

Data or

Address

Op Code

Data

or

Address

Addressing Modes:

Often the data that is to be operated on is stored in

memory. When multi-byte numeric data is used, the data,

like instructions, is stored in successive memory locations,

with the least significant byte first, followed by increasingly

significant bytes. The 8080 has four different modes for

addressing data stored in memory or in registers:

* Direct — Bytes 2 and 3 of the instruction contain

the exact memory address of the data

item (the low-order bits of the address are

in byte 2, the high-order bits in byte 3).

* Register — The instruction specifies the register or

register-pair in which the data is located.

* Register Indirect — The instruction specifies a reg-

ister-pair which contains the memory

address where the data is located (the

high-order bits of the address are in the

first register of the pair, the low-order

bits in the second).

* Immediate — The instruction contains the data it-

self. This is either an 8-bit quantity or a

16-bit quantity (least significant byte first,

most significant byte second).

Unless directed by an interrupt or branch instruction,

the execution of instructions proceeds through consecu-

tively increasing memory locations. A branch instruction

can specify the address of the next instruction to be exe-

cuted in one of two ways:

* Direct—The branch instruction contains the ad-

dress of the next instruction to be exe-

cuted. (Except for the 'RST' instruction,

byte 2 contains the low-order address and

byte 3 the high-order address.)

* Register indirect — The branch instruction indi-

cates a register-pair which contains the

address of the next instruction to be exe-

cuted. (The high-order bits of the address

are in the first register of the pair, the

low-order bits in the second.)

The RST instruction is a special one-byte call instruc-

tion (usually used during interrupt sequences). RST in-

cludes a three-bit field; program control is transferred to

the instruction whose address is eight times the contents

of this three-bit field.

Condition F!ags:

There are five condit ion flags associated with the exe-

cution of instructions on the 8080. They are Zero, Sign,

Parity, Carry, and Auxiliary Carry, and are each represented

by a 1-bit register in the CPU. A flag is "set " by forcing the

bit to 1; "reset" by forcing the bit to 0.

Unless indicated otherwise, when an instruction af-

fects a flag, it affects it in the following manner:

Zero: If the result of an instruction has the

value 0, this flag is set; otherwise it is

reset.

Sign: If the most significant bit of the result of

the operation has the value 1, this flag is

set; otherwise it is reset.

Parity: If the modu lo 2 sum of the bits of the re-

sult of the operation is 0, (i.e., if the

result has even parity), this flag is set;

otherwise it is reset (i.e., if the result has

odd parity).

Carry: If the instruction resulted in a carry

(from addit ion), or a borrow (from sub-

traction or a comparison) out of the high-

order bit, this flag is set; otherwise it is

reset.

2-2

Auxiliary Carry: If the instruction caused a carry out rh

of bit 3 and into bit 4 of the resulting

value, the auxiliary carry is set; otherwise ^

it is reset. This flag is affected by single

precision additions, subtractions, incre-

ments, decrements, comparisons, and log- ^

ical operations, but is principally used

with additions and increments preceding

a DAA (Decimal Adjust Accumulator) SP

instruction.

Symbots and Abbreviations:

The following symbols and abbreviations are used in

the subsequent description of the 8080 instructions:

S Y M B O L S M E A N i N G

accumulator Register A

addr 16-bit address quantity

data 8-bit data quantity

data 16 16-bit data quantity

byte 2 The second byte of the instruction

byte 3 The third byte of the instruction

port 8-bit address of an I/O device

r,r1,r2 One of the registers A,B,C,D,E,H,L

DDD,SSS The bit pattern designating one of the regis-

ters A,B,C,D,E,H,L (DDD=destinat ion, SSS=

source):

D D D o r S S S R E G t S T E R N A M E

111 A

M O B

001 C

010 D

011 E

100 H

101 L

rp One of the register pairs:

B represents the B,C pair with B as the high-

order register and C as the low-order register;

D represents the D,E pair with D as the high-

order register and E as the low-order register;

H represents the H,L pair with H as the high-

order register and L as the low-order register;

SP represents the 16-bit stack pointer

register.

RP The bit pattern designating one of the regis-

ter pairsB,D,H,SP:

RP R E G) S T E R P A) R

00 B-C

01 D-E

10 H-L

11 SP

The first (high-order) register of a designated

register pair.

The second (low-order) register of a desig-

nated register pair.

16-bit program counter register (PCH and

PCL are used to refer to the high-order and

low-order 8 bits respectively).

16-bit stack pointer register (SPH and SPL

are used to refer to the high-order and low-

order 8 bits respectively).

r^, Bit m of the register r (bits are number 7

through 0 from left to right).

Z ,S,P,CY,AC The condit ion flags:

Zero,

Sign,

Parity,

Carry,

and Auxiliary Carry, respectively.

() The contents of the memory location or reg-

isters enclosed in the parentheses.

— " I s t rans fer red to"

A Logical A N D

V Exclusive O R

V Inclusive O R

+ Addit ion

— Two's complement subtraction

* Multiplication

"Is exchanged w i t h "

The one's complement (e.g., (A))

n The restart number 0 through 7

NNN The binary representation 000 through 111

for restart number 0 through 7 respectively.

Description Format:

The following pages provide a detailed description of

the instruction set of the 8080. Each instruction is de-

scribed in the following manner:

1. The MAC 80 assembler format, consisting of

the instruction mnemonic and operand fields, is

printed in B O L D F A C E on the left side of the first

line.

2. The name of the instruction is enclosed in paren-

thesis on the right side of the first line.

3. The next line(s) contain a symbolic description

of the operation of the instruction.

4. This is followed by a narative description of the

operation of the instruction.

5. The following line(s) contain the binary fields and

patterns that comprise the machine instruction.

2-3

6. The tast four lines contain incidental information

about the execution of the instruction. The num-

ber of machine cycles and states required to exe-

cute the instruction are listed first. If the instruc-

tion has two possible execution times, as in a

Conditional J ump , both times will be listed, sep-

arated by a slash. Next, any significant data ad-

dressing modes (see Page 4-2) are listed. The last

line lists any of the five Flags that are affected by

the execution of the instruction.

Data Transfer Group:

This group of instructions transfers data to and from

registers and memory. Condi t ion fiags are not affected by

any instruction in this group.

M V t r , data (Move Immediate)

(r) (byte 2)

The content of byte 2 of the instruction is moved to

registerr.

0 ' 0 D ' D ' D 1 ' 1 ' 0

data

Cycles:

States:

Addressing:

Flags:

2

7

immediate

none

M O V r l , r2 (Move Register)

(r1) (r2)

The content of register r2 is moved to register r1.

0 ' 1 D D D S S S

Cycles'. 1

States: 5

Addressing: register

Flags: none

M O V r, M (Move from memory)

(r) ^ — « H) (L))

The content of the memory location, whose address

is in registers H and L, is moved to register r.

0 1 D D
T

D 1 1 0

Cycles: 2

States: 7

Addressing: reg.indirect

Flags: none

M O V M, r (Move to memory)

((H) (L)) ^ — (r)

The content of register r is moved to the memory lo-

cation whose address is in registers H and L.

0 ' 1 ' 1 ' 1 ' 0 s s s

Cycles: 2

States: 7

Addressing: reg. indirect

Flags: none

MV) M, data (Move to memory immediate)

((H) (L)) (byte 2)

The content of byte 2 of the instruction is moved to

the memory location whose address is in registers H

a n d L .

0 ' o) 1 1 ' 0 ' 1 ' 1 0

data

Cycles:

States:

Addressing:

Flags:

3

10

immed./reg.indirect

none

LX) rp, data 16 (Load register pair immediate)

(rh)- t— (byte 3),

(rl) (byte 2)

Byte 3 of the instruction is moved into the high-order

register (rh) of the register pair rp. Byte 2 of the in-

struction is moved into the low-order register (rl) of

the register pair rp.

0 R 0
T

1

low-order data

high-order data

Cycles: 3

States: 10

Addressing: immediate

Flags: none

2-4

L D A a d d r (Load Accumulator direct)

(A) ((by te3) (byte2))

The content of the memory location, whose address

is specified in byte 2 and byte 3 of the instruction, is

moved to register A .

0 0 1 1 1 ' 1 0

low-order addr

high-order addr

Cycles: 4

States: 13

Addressing: direct

Flags: none

S H L D addr (Store H and L direct)

((by te3) (byte2)) (L)

((byte 3)(byte 2) + 1) -*-— (H)

The content of register L is moved to the memory lo-

cation whose address is specified in byte 2 and byte

3. The content of register H is moved to the succeed-

ing memory location.

0 0 1 0
T

0 0

low-order addr

high-order addr

Cycles: 5

States: 16

Addressing: direct

Flags: none

1

STA addr (Store Accumulator direct)

((by te3) (by te2)) (A)

The content of the accumulator is moved to the

memory location whose address is specified in byte

2 and byte 3 of the instruction.

0 0 1 1 0 0 1

low-order addr

high-order addr

Cycles: 4

States: 13

Addressing: direct

Flags: none

L H L D a d d r (Load H and L direct)

(L) « by t e3) (by t e2))

(H) ^ — ((by te3) (by te2) + 1)

The content of the memory location, whose address

is specified in byte 2 and byte 3 of the instruction, is

moved to register L. The content of the memory loca-

tion at the succeeding address is moved to register H.

0 1 0 1 1 0

low-order addr

high-order addr

Cycles: 5

States: 16

Addressing: direct

Flags: none

L D A X r p (Load accumulator indirect)

(A) ((rp))

The content of the memory location, whose address

is in the register pair rp, is moved to register A. Note:

only register pairs rp=B (registers B and C) or rp=D

(registers D and E) may be specified.

0 0 R
T 1 0 1

Cycles: 2

States: 7

Addressing: reg. indirect

Flags: none

STAX rp (Store accumulator indirect)

((rp)) (A)

The content of register A is moved to the memory lo-

cation whose address is in the register pair rp. Note:

only register pairs rp=B (registers B and C) or rp=D

(registers D and E) may be specified.

0 0 R P 0 0 1 < o

Cycles

States

Addressing

Flags

2

7

reg. indirect

none

X C H G (Exchange H and L with D and E)

(H) ^ - ^ (D)

(L) ^ - ^ (E)

The contents of registers H and L are exchanged with

the contents of registers D and E.

1 1 1 ' 0 ' 1 ' 0) 1 ! 1

Cycles: 1

States: 4

Addressing: register

Flags: none

2-5

Arithmetic Group:

This group of instructions performs arithmetic oper-

ations on data in registers and memory.

Untess indicated otherwise, at) instructions in this

group affect the Zero, Sign, Parity, Carry, and Auxi t iary

Carry fiags according to the standard ruies.

All -subtraction operations are performed via two's

complement arithmetic and set the carry flag to one to in-

dicate a borrow and clear it to indicate no borrow.

A D C r (Add Register with carry)

(A) (A) + (r) + (CY)

The content of register r and the content of the carry

bit are added to the content of the accumulator. The

result is placed in the accumulator.

1 ' 0 0 0 1 s s s

Cycles: 1

States: 4

Addressing: register

Flags: Z,S,P,CY,AC

A D D r (Add Register)

(A) (A) + (r)

The content of register r is added to the content of the

accumulator. The result is placed in the accumulator.

1 0 0 0 0 s s s

Cycles

States

Addressing

Flags

1

4

register

Z,S,P,CY,AC

A D C M (Addmemoryw i t h c a r r y)

(A) (A) + ((H) (L)) + (CY)

The content of the memory location whose address is

contained in the H and L registers and the content of

the CY flag are added to the accumulator. The result

is placed in the accumulator.

1 ' 0 0 ' 0 < 1 ' 1 ' 1 ' 0

Cycles: 2

States: 7

Addressing: reg. indirect

Flags: Z,S,P,CY,AC

A D D M (Add memory)

(A) (A) + ((H) (L))

The content of the memory location whose address

is contained in the H and L registers is added to the

content of the accumulator. The result is placed in

the accumulator.

1 0 0 0 0 1 1 0

AC) data (Add immediate with carry)

(A) (A) + (byte 2) + (CY)

The content of the second byte of the instruction and

the content of the CY flag are added to the contents

of the accumulator. The result is placed in the

accumulator.

Cycles

States

Addressing

Flags

2

7

reg.indirect

Z,S,P,CY,AC

1 1 0 0 ' 1 < 1 ' 1 ' 0

data

AD) data (Add immediate)

(A) (A) + (byte 2)

The content of the second byte of the instruction is

added to the content of the accumulator. The result

is placed in the accumulator.

1 ' 1 ' 0 0 ' 0 ' 1 1 0

data

Cycles: 2

States: 7

Addressing: immediate

Flags: Z ,S ,P,CY,AC

SUB r (Subtract Register)

(A) (A) - (r)

The content of register r is subtracted from the con-

tent of the accumulator. The result is placed in the

accumulator.

1 1

Cycles

States

Addressing

Flags

2

7

immediate

Z,S,P,CY,AC

Cycles: 1

States: 4

Addressing: register

Flags: Z ,S ,P,CY,AC

2-6

SUB M (Subtract memory)

(A) (A) - « H) (L))

The content of the memory location whose address is

contained in the H and L registers is subtracted from

the content of the accumulator. The result is placed

in the accumulator.

1 0 0 ' 1 ' 0 1 1 ' 0

Cycles: 2

States: 7

Addressing: reg. indirect

Flags: Z,S,P,CY,AC

SU) data (Subtract immediate)

(A) — (A) - (byte 2)

The content of the second byte of the instruction is

subtracted from the content of the accumulator. The

result is placed in the accumulator.

1 1 ' 0 ' 1 ' 0 ' 1 ' 1 ' 0

data

Cycles: 2

States: 7

Addressing: immediate

Flags: Z,S,P,CY,AC

SB! data (Subtract immediate with borrow)

(A) (A) - (byte 2) - (CY)

The contents of the second byte of the instruction

and the contents of the CY flag are both subtracted

from the accumulator. The result is placed in the

accumulator.

1 ' 1 0 1 * 1 ' 1 1 ' 0

data

Cycles: 2

States: 7

Addressing: immediate

Flags: Z,S,P,CY,AC

!NR r (Increment Register)

(r) (r) + 1

The content of register r is incremented by one.

Note: All condit ion flags except CY are affected.

D D 1

Cycles

States

Addressing

Flags

1

5

register

Z,S,P,AC

SBB r (Subtract Register with borrow)

(A) (A) - (r) - (CY)

The content of register r and the content of the CY

flag are both subtracted from the accumulator. The

result is placed in the accumulator.

1 < 0 ' 0 ' 1 1 s < s < s

Cycles: 1

States: 4

Addressing: register

Flags: Z,S,P,CY,AC

iNR M (Increment memory)

((H) (L)) ((H) (L)) + 1

The content of the memory location whose address

is contained in the H and L registers is incremented

by one. Note: All condit ion flags except CY are

affected.

0 ' 0 ' 1 ' 1 ' 0 < 1 i 0 ' o

Cycles: 3

States: 10

Addressing: reg. indirect

Flags: Z,S,P,AC

SBB IVI (Subtract memory with borrow)

(A) (A) - ((H) (L)) - (C Y)

The content of the memory location whose address is

contained in the H and L registers and the content of

the CY flag are both subtracted from the accumula-

tor. The result is placed in the accumulator.

1 ' 0 ' 0 ' 1 1 1 1 0

Cycles: 2

States: 7

Addressing: reg. indirect

Flags: Z,S,P,CY,AC

DCR r (Decrement Register)

(r) (r) - 1

The content of register r is decremented by one.

Note: All condit ion flags except CY are affected.

0 0 D ' D ' D < 1 ' 0 < 1

Cycles

States

Addressing

Flags

1

5

register

Z,S,P,AC

2-7

DCR tVt (Decrement memory)

« H) (L)) ^ — ((H) (L)) - 1

The content of the memory location whose address is

contained in the H and L registers is decremented by

one. Note: All condit ion flags except CY are affected.

0 0 1 1 ' o ' 1 ' o 1

Cycles

States

Addressing

Flags

3

10
reg.indirect

Z,S,P,AC

D A A (Decimal Adjust Accumulator)

The eight-bit number in the accumulator is adjusted

to form two four-bit Binary-Coded-Decimal digits by

the following process:

1. If the value of the least significant 4 bits of the

accumulator is greater than 9 or if the AC flag

is set, 6 is added to the accumulator.

2. If the value of the most significant 4 bits of the

accumulator is now greater than 9, or if the CY

flag is set, 6 is added to the most significant 4

bits of the accumulator.

NOTE: All flags are affected.

t N X r p (Increment register pair)
0 0 1 ' 0 I 0 t 1 I 1 ' 1

(r h) (r l) ^ — (rh) (r l) + 1

The content of the register pair rp is incremented by

one. Note: No condit ion ftags are affected.

Cycles:

States:

Flags:

1

4

Z,S,P.CY,AC

R

Cycles: 1

States: 5

Addressing: register

Flags: none

D C X rp (Decrement register pair)

(rh) (rl) (rh) (rl) - 1

The content of the register pair rp is decremented by

one. Note: No condit ion ftags are affected.

0 0 R 1 0 1 1

Cycles: 1

States: 5

Addressing: register

Flags: none

Logica! Group:

This group of instructions performs logica) (Boolean)

operations on data in registers and memory and on condi-

tion flags.

Unless indicated otherwise, all instructions in this

group affect the Zero, Sign, Parity, Auxiliary Carry, and

Carry flags according to the standard rules.

A N A r (AND Register)

(A) (A) A (r)

The content of register r is logically anded with the

content of the accumulator. The result is placed in

the accumulator. The C Y f)ag is cieared.

1 0 1 ' 0 ' 0 s s s

Cycles

States

Addressing

Flags

1

4

register

Z,S,P,CY,AC

D A D rp (Add register pair to H and L)

(H) (L) ^ — (H) (L) + (rh)(r l)

The content of the register pair rp is added to the

content of the register pair H and L. The result is

placed in the register pair H and L. Note: On iy the

CY ftag is affected. It is set if there is a carry out of

the double precision add; otherwise it is reset.

0 1 0 1

Cycles: 3

States: 10

Addressing: register

Flags: CY

ANAIV) (AND memory)

(A) (A) A ((H) (L))

The contents of the memory tocation whose address

is contained in the H and L registers is logically anded

with the content of the accumulator. The result is

placed in the accumulator. The C Y ftag is cteared.

1 0 1 ! 0 ' 0 ' 1 ' 1 ' 0

Cycles: 2

States: 7

Addressing: reg. indirect

Flags: Z,S,P,CY,AC

2-8

AN) data (AND immediate)

(A) (A) A (byte 2)

The content of the second byte of the instruction is

logically anded with the contents of the accumulator.

The result is placed in the accumulator. The C Y and

AC flags are cleared.

1 1 < 1 < 0 < 0 ' 1 ' 1 < 0

data

Cycles

States

Addressing

Flags

2
7

immediate

Z,S,P,CY,AC

X R A r (Exclusive OR Register)

(A) (A) V (r)

The content of register r is exclusive-or'd with the

content of the accumulator. The result is placed in

the accumulator. The CY and AC flags are cleared.

1 0 1 0
T

1 T

Cycles

States

Addressing

Flags

1

4

register

Z,S,P,CY,AC

X R A IVt (Exclusive OR Memory)

(A) (A) V ((H) (L))

The content of the memory location whose address

is contained in the H and L registers is exclusive-OR'd

with the content of the accumulator. The result is

placed in the accumulator. The CY and AC flags are

cleared.

1 0 1 < 0 1 1 1 ' 0

O R A r (OR Register)

(A) (A) V (r)

The content of register r is inclusive-OR'd with the

content of the accumulator. The result is placed in

the accumulator. The CY and AC flags are cleared.

1 0 ' 1 ' 1 ' 0 S < s i s

Cycles

States

Addressing

Flags

1

4

register

Z ,S ,P ,CY,AC

O R A M (OR memory)

(A) (A) V ((H) (L))

The content of the memory location whose address is

contained in the H and L registers is inclusive-OR'd

with the content of the accumulator. The result is

placed in the accumulator. The CY and AC flags are

cleared.

1 0 1 ' 1 ' 0 ' 1 ' 1 ' 0

Cycles: 2

States: 7

Addressing: reg. indirect

Flags: Z ,S ,P,CY,AC

O R ! data (OR Immediate)

(A) (A) V (byte 2)

The content of the second byte of the instruction is

inclusive-OR'd with the content of the accumulator.

The result is placed in the accumulator. The CY and

AC flags are cleared.

1 ' 1 1 1 ' 0 1 1 ' 0

data

Cycles

States

Addressing

Flags

2 Cycles: 2

7 States: 7

reg. indirect Addressing: immediate

Z,S,P,CY,AC Flags: Z ,S ,P,CY,AC

X R t d a t a (Exclusive O R immediate)

(A) (A) V (byte 2)

The content of the second byte of the instruction is

exclusive-OR'd with the content of the accumulator.

The result is placed in the accumulator. The CY and

AC ftags are cleared.

CMP r (Compare Register)

(A) - (r)

The content of register r is subtracted from the ac-

cumulator. The accumulator remains unchanged. The

condit ion flags are set as a result of the subtraction.

The Z ftag is set to 1 if (A) = (r). The CY fiag is set to

1 if (A X (r) .
1 1 ' 1 ' o I 1 ' 1 1 ' 0

data

Cycles

States

Addressing

Flags

2 Cycles: 1

7 States: 4

immediate Addressing: register

Z,S,P,CY,AC Flags: Z,S,P,CY,AC

2-9

CMP M (Compare memory)

(A) - ((H) (L))

The content of the memory location whose address

is conta ined in the H and L registers is subtracted

f rom the accumulator . The accumulator remains un-

changed. The cond i t ion flags are set as a result of the

subtract ion. The Z flag is set to 1 if (A) = ((H) (L)) .

T h e C Y f l a g i s s e t t o 1 i f (A) < ((H) (L)) .

1 0 ' 1 1 1 1 1 0

Cycles

States

Addressing

Flags

2

7

reg. indirect

Z ,S ,P ,CY ,AC

CP) data (Compare immediate)

(A) - (byte 2)

The conten t of the second byte of the instruction is

subtracted f rom the accumulator . The cond i t ion flags

are set by the result of the subtract ion. The Z flag is

set to 1 if (A) = (byte 2). The C Y flag is set to 1 if

(A) < (byte 2).

R R C (Rota te right)

(An) (A p . i) ; (Ay) (Ao)

(C Y) ^ - (Ao)

The content of the accumulator is rotated right one

posit ion. The high order bit and the C Y flag are both

set to the value shifted ou t o f the low order bi t posi-

t ion . On)y the C Y ftag is af fected.

0 0 ' 0 < 0 1 < 1 ' 1 1

Cycles: 1

States: 4

Flags: C Y

R A L (Rota te left through carry)

(An+1) (A n) ; (C Y) ^ (A ?)

(AQ) (CY)

The content of the accumula tor is rotated left one

posit ion through the C Y flag. The low order bit is set

equal to the C Y flag and the C Y flag is set to the

value shifted ou t of the high order bit . On ty the C Y

ftag is affected.

0 0 0 1 ' 0 ' 1 ' 1 1

Cycles: 1

States: 4

Flags: C Y

1 ' 1 1 1 ' 1 1 1 0
R A R

data

Cycles

States

Addressing

Flags

2

7

immediate

Z ,S ,P .CY ,AC

R L C (Rota te left)

(An+1) (A J ; (AQ) (Ay)

(C Y) ^ — (Ay)

The content of the accumulator is rotated left one

posit ion. The low order bit and the C Y flag are both

set to the value shifted ou t of the high order bit posi-

t ion . On ty the C Y ftag is affected.

0 0 0 ' 0 ' 0 * 1 1 ' 1

Cycles:

States:

Flags:

1

4

C Y

(Rota te right through carry)

(Ap) (An+1) ; (CY) (Ao)

(Ay) (CY)

The content of the accumulator is rotated right one

posit ion through the C Y flag. The high order bit is set

t o the C Y flag and the C Y flag is set t o the value

shifted ou t of the low order bit . On ty the C Y ftag is

affected.

0 0 0 1 ' 1 ' 1 ' 1 ' 1

C M A

Cycles: 1

States: 4

Flags: C Y

(Comp lemen t accumulator)

(A) (A)

The contents of the accumula tor are complemented

(zero bits become 1, one bits become 0). No ftags are

affected.

0 0 1 ! o < 1 < 1 ' 1 ' 1

Cycles:

States:

Flags:

1

4

none

2-10

CMC (Complement carry)

(CY) — (CY)

The CY flag is complemented. No other flags are

affected.

dress is specified in byte 3 and byte 2 of the current

instruction.

0 0 1 1 ' 1 1 1 1

1 ^ 1 ' 0

low-order addr

high-order addr

Cycles: 1

States: 4

Flags: CY

STC (Set carry)

(CY) 1

The CY flag is set to 1. No other ftags are affected.

0 0 1 ' 1 ' 0 * 1 1 1

Cycles: 1

States: 4

Flags: CY

Cycles: 3

States: 10

Addressing: immediate

Flags: none

Jcondi t ion addr (Conditional jump)

!f (CCC),

(PC) -*— (byte 3) (byte 2)

If the specified condit ion is true, control is trans-

ferred to the instruction whose address is specified in

byte 3 and byte 2 of the current instruction; other-

wise, control continues sequentially.

1 * 1

low-order addr

high-order addr

Branch Group:

This group of instructions alter normal sequential

program flow.

Condit ion fiags are not affected by any instruction

in this group.

The two types of branch instructions are uncondi-

tional and conditional. Unconditional transfers simply per-

form the specified operation on register PC (the program

counter). Conditional transfers examine the status of one of

the four processor flags to determine if the specified branch

is to be executed. The conditions that may be specified are

as follows:

C O N D m O N CCC

NZ - not zero (Z = 0) 000

Z - zero (Z = 1) 001

NC - no carry (CY = 0) 010

C - carry (C Y = 1) 011

PO - parity odd (P = 0) 100

PE - parity even (P = 1) 101

P - p lus(S = 0) 110

M - minus (S = 1) 111

Cycles:

States:

Addressing:

Flags:

CALL addr (Call)

((SP) - 1) (PCH)

((SP) - 2) (PCL)

(SP) (SP) - 2

(PC) (byte 3) (byte 2)

The high-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is one less than the content of register SP.

The low-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is two less than the content of register SP.

The content of register SP is decremented by 2. Con-

trol is transferred to the instruction whose address is

specified in byte 3 and byte 2 of the current

instruction.

l " " ! i t o ^ 1

low-order addr

high-order addr

3

10
immediate

none

JMP addr (Jump)

(PC) (byte 3) (byte 2)

Control is transferred to the instruction whose ad-

Cycles: 5

States: 17

Addressing: immediate/reg. indirect

Flags: none

2-11

Ccondit ion addr

tf (CCC),

((SP) - 1)

((SP) - 2)

(SP)

(PC)

(Condition call)

(PCH)

(PCL)

(S P) - 2

(byte 3) (byte 2)

If the specified condit ion is true, the actions specified

in the CALL instruction (see above) are performed;

otherwise, control continues sequentially.

1 1 1 0 0

tow-order addr

high-order addr

Cycles: 3/5

States'. 11/17

Addressing: immediate/reg. indirect

Flags: none

RET (Return)

(PCL) ((SP)b

(PCH) ((SP) + 1);

(SP) (SP) + 2;

The content of the memory location whose address

is specified in register SP is moved to the low-order

eight bits of register PC. The content of the memory

location whose address is one more than the content

of register SP is moved to the high-order eight bits of

register PC. The content of register SP is incremented

by 2.

1 1 0 0 1 ' 0 0 1

Cycles: 3

States: 10

Addressing: reg. indirect

Ftags: none

Rcondi t ion (Conditional return)

)f (CCC),

(PCL) ((SP))

(PCH) ((SP) + 1)

(SP) -*— (SP) + 2

If the specified condit ion is true, the actions specified

in the RET instruction (see above) are performed;

otherwise, control continues sequentially.

1 1 0 0

RST n (Restart)

((SP) - 1) (PCH)

((SP) - 2) (PCL)

(SP) (SP) - 2

(PC) 8 * (N N N)

The high-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is one less than the content of register SP.

The low-order eight bits of the next instruction ad-

dress are moved to the memory location whose

address is two less than the content of register SP.

The content of register SP is decremented by two.

Control is transferred to the instruction whose ad-

dress is eight times the content of NNN.

T T

Cycles: 3

States: 11

Addressing: reg. indirect

Flags: none

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 N N N 0 0 0

Program CounterAf ter Restart

PCHL (Jump H and L indirect - move H and L to PC)

(PCH) (H)

(PCL) (L)

The content of register H is moved to the high-order

eight bits of register PC. The content of register L is

moved to the low-order eight bits of register PC.

1 ' 1 ' 1 0 ' 1 0 0 1

Cycles: 1

States: 5

Addressing: register

Flags: none

Cycles: 1/3

States: 5/11

Addressing: reg. indirect

Flags: none

2-12

Stack, !/0, and Machine Contro! Group:

This group of instructions performs) /0 , manipulates

the Stack, and alters interna) control flags.

Unless otherwise specified, condit ion ftags are not

affected by any instructions in this group.

FLAG W O R D

D? Ds D5 D4 D3 D2 D1 Do

S z 0 AC 0 P 1 CY

PUSH rp (Push)

((SP) - 1) (rh)

((SP) - 2) - * - (rl)

(SP) (SP) - 2

The content of the high-order register of register pair

rp is moved to the memory location whose address is

one less than the content of register SP. The content

of the low-order register of register pair rp is moved

to the memory location whose address is two less

than the content of register SP. The content of reg-

ister SP is decremented by 2. Note: Register pair

rp = SP may not be specified.

1 T 1 R
T

0
T

1
T

1

Cycles: 3

States: 11

Addressing: reg. indirect

Flags: none

PUSH PSW (Push processor status word)

((SP) - 1) (A)

((SP) - 2)o — (CY) , ((SP) - 2) 1

((S P) - 2) 2 ^ — (P) , ((S P) - 2) 3 ^ - 0

((SP) - 2)4 (AC) , ((SP) - 2) 5 0

((S P) - 2) e ^ — (Z) , ((S P) - 2) ? ^ — (S)

(SP) -*— (SP) - 2

The content of register A is moved to the memory

location whose address is one less than register SP.

The contents of the condit ion flags are assembled

into a processor status word and the word is moved

to the memory location whose address is two less

than the content of register SP. The content of reg-

ister SP is decremented by two.

1 ' 1 ' 1 1 ' 0 1 ' 0 ' 1

Cycles:

States:

Addressing:

Flags:

3

11

reg. indirect

none

POP rp

(rl)

(rh)

(SP)

(Pop)

((SP))

((SP)+ 1)

(SP) + 2

The content of the memory location, whose address

is specified by the content of register SP, is moved to

the low-order register of register pair rp. The content

of the memory location, whose address is one more

than the content of register SP, is moved to the high-

order register of register pair rp. The content of reg-

ister SP is incremented by 2. Note: Register pair

rp = SP may not be specified.

T
1 R

T
1

Cycles: 3

States: 10

Addressing: reg. indirect

Flags: none

POP PSW (Pop processor status word)

(CY) «SP))o

(P) «SP))2

(AC) «SP))4

(Z) ((SP))e

(S) « SP)) y

(A) ((SP) + 1)

(SP) (SP) + 2

The content of the memory location whose address

is specified by the content of register SP is used to

restore the condit ion flags. The content of the mem-

ory location whose address is one more than the

content of register SP is moved to register A . The

content of register SP is incremented by 2.

1 1 ' 1 ' 1 ' 0 ' 0 < 0 ! 1

Cycles:

States:

3

10
Addressing: reg. indirect

Flags: Z ,S ,P,CY,AC

2-13

XTHL (Exchange stack top with H and L)

(L) ((SP))

(H) ^ ((S P) + 1)

The content of the L register is exchanged with the

content of the memory location whose address is

specified by the content of register SP. The content

of the H register is exchanged with the content of the

memory location whose address is one more than the

content of register SP.

E! (Enable interrupts)

The interrupt system is enabled foHowing the execu-

tion of the next instruction.

1 1 1 < 1 < 1 ^ 0 1 1

Cycles: 1

States: 4

Flags: none

1 1 1 ' 0 ' 0 ' 0 1 ' 1

Cycles: 5

States: 18

Addressing: reg.indirect

Flags: none

D) (Disableinterrupts)

The interrupt system is disabled immediatety fot-

iowing the execution of the D) instruction.

1 1 1 1 ' 0 0 1 1

SPHL (M o v e H L t o S P) Cycles: 1

(SP) (H) (L) States: 4

The contents of registers H and L (16 bits) are moved Flags: none

to register SP.

1 ' 1 < 1 ' 1 1 0 ' 0 ' 1

Cycles: 1

States: 5

Addressing: register

Flags: none

)N port (Input)

(A) (data)

The data placed on the eight bit bi-directional data

bus by the specified port is moved to register A.

1 < 1 0 1 ' 1 ' 0 1 ! 1

port

HLT (Halt)

The processor is stopped. The registers and flags are

unaffected.

o ' 1 1 1 ' 0 1 ' 1 ' 0

Cycles: 1

States: 7

Flags: none

NOP (No op)

No operation is performed. The registers and flags

are unaffected.

Cycles

States

Addressing

Flags

3

10
direct

none

o ' o ! 0 * 0 0 0 ' 0 ' 0

OUT port (Output)

(data) (A)

The content of register A is placed on the eight bit

bi-directional data bus for transmission to the spec-

ified port.

Cycles:

States:

Flags:

1

4

none

1 1 ! o 1 ! o ' 0 1 ' 1

port

Cycles: 3

States'. 10

Addressing: direct

Flags: none

2-14

!NSTRUCT)ON SET

S u m m a r y o f Processor tnstruct ions

0? Og D5 D4 O3 D^ 0 , Oo
Clock!?!

M O V , , . , ?

M O V M, r

M O V r . M

H L T

M V I r

M V I M

INR r

OCR r

INR M

OCR M

A O O r

A O C r

S U 6 r

SBB r

A N A r

X R A r

O R A r

C M P r

A O O M

A O C M

SUB M

SBB M

A N A M

X R A M

O R A M

CMP M

A D I

A C I

SUI
SBI

A N I

X R I

O R I

CPI

RLC

RRC

R A L

R A R

JMP

JC

JNC

JZ

J N Z

JP

JM

JPE

JPO

C A L L

CC

CNC

CZ

CNZ

CP

CM

CPE

CPO

RET

RC

RNC

Halt

A

0 0
0 0
0 0
0 0

S S

S S

I 0
1 0
1 0
! (I
0 0

0
0
0
0
0
0
0
0

0 I
0 0
0 0
0 0
0 0

0 0
0 0

0
0

0 0

4

4

4

10

10
10
10

10
10
10
10
10
17

11/17

11/17

11/17

11/17

11/17

11/17

11/17

11/17

10
5/11

5 /11

Instruction CodeM Clock 0!
Mnemonic Description D? De O5 "4 D3 Dz D1 Oo CycLs

RZ Return on zero 1 1 0 0 1 0 0 0 5/11
R N Z Return on no zero 1 1 0 0 0 0 c 0 5/11
RP Return on posit ive 1 1 1 1 0 0 0 0 5/11
RM Return on minus 1 I 1 1 1 0 0 0 5/11
RPE Return on par i ty even 1 1 1 1 0 0 0 5/11
RPO Retu rn on par i ty odd 1 1 1 0 0 0 0 5/11
RST Restart 1 1 A A 1 1 1 11
IN I n p u t 1 1 0 1 1 0 1 I 10
O U T O u t p u t 1 1 0 1 0 0 1 1 10
L X I B Load immediate register 0 0 0 0 0 0 1 10

Pair B & C

L X I D Load immedia te register 0 0 0 1 0 0 0 1 10
Pair 0 & E

L X I H Load immediate register 0 0 1 0 0 0 1 10
Pair H & L

L X I SP Load immed ia te stack po in te r 0 0 1 1 1) 0 0 1 10
PUSH B Push register Pair B & C nn 1 1 0 0 1 0 1 11

PUSH D Push register Pair D & E on 1 1 0 1 0 1 0 I 11
stack

PUSH H Push register Pair H & L on 1 1 1 0 1 0 1 11

PUSH PSW Push A and Flags 1 1 1 1 0 1 0 1 11
on stack

POP B Pop register pair B & C o f f 1 1 0 0 0 0 1 10

POP 0 Pop register pair 0 & E o f f 1 1 0 1 0 0 0 1 10

POP H Pop register pair H & L o l f 1 1 1 0 0 0 1 10

POP PSW Pap A and Flags 1 1 1 1 0 0 0 1 10
of f stack

STA Store A d i rect 0 0 I 1 0 0 I 0 13

L D A Load A direct 0 0 1 1 I 0 1 0 13

X C H G Exchange 0 & E, H & L 1 1 1 1 0 1 1 4

Registers

X T H L Exchange top of stack, H & L 1 1 1 0 0 1 1 18
SPHL H & L to stack po in ter 1 1 1 1 1 0 0 1 5

PCHL H & L to program counter 1 1 1 1 0 0 1 5

O A O B A d d B & C to H & L 0 0 1 0 0 1 10
O A D 0 A d d 0 & E to H & L p 0 1] 0 0 1 10
D A O H A d d H & L to H & L 0 0 1 1 0 0 1 10
O A O SP A d d stack po in te r to H & L 0 0 I 1 1 0 0 1 10
S T A X B Store A indi rect 0 0 0 0 0 I 0 7

S T A X 0 Store A ind i rec t 0 0 0 1 0 0 1 0 7

L O A X B Load A indi rect 0 0 0 1 0 1 0 7

L O A X 0 Load A indi rect 0 0 0 1 1 0 1 0 7

I N X B Increment B & C registers 0 0 0 0 0 1 1 5

I N X 0 Increment 0 & E registers 0 0 0 1 0 0 1 1 5

I N X H Increment H & L registers 0 0 1 0 0 1 1 5

I N X S P Increment stack po in te r 0 0 1 1 0 0 1 1 5
OCX B Oecrement B & C 0 0 0 1 0 1 1 5
OCX 0 Decrement 0 & E 0 0 0 1 1 0 1 1 5

OCX H Oecrement H S L 0 0 1 1 0 1 1 5

D C X S P Oecrement stack po in te r 0 0 1 1 1 0 1 1 5
CMA C o m p l e m e n t A 0 0 1 1 1 1 1 4
STC Set car ry 0 0 I 1 0 1 1 1 4
CMC C o m p l e m e n t carry 0 0 I 1 I 1 1 1 4
O A A Decimal adjust A 0 0 1 0 1 1 1 4

S H L O Store H & L direct 0 0 1 0 0 1 0 16

L H L O Load H & L direct 0 0 1 1 0 1 0 16
El Enable In te r rup ts 1 1 I 1 1 0 1 1 4

Ol Disable i n te r rup t I 1 1 1 0 0 1 1 4

NOP No-opera t ion 0 0 0 0 0 0 0 0 4

NOTES: 1. DDD or SSS - OOO 8 - 001 C - 010 D - 011 E - 100 H - 101 L - 110 Memory - 111 A.

2. Two possible cycle times, (5/11) indicate instruction cycles dependent on condition flags.

2-15

Siticon Gate MOS 8080A
StNGLE CHtP 8-B)T N-CHANNEL MtCROPROCESSOR

7*/?e SOSO/S funcr/ong/// anc/ e/ecfr/ca/// cowpg f/b/e w/Y/7 f^e /n fe/-- 5050.

a TTL Drive Capabiiity

* 2 ^s !nstruction Cyc!e

* Powerfu! Probiem Soiving
instruction Set

* Six Genera! Purpose Registers
and an Accumulator

* Sixteen Bit Program Counter for
Directiy Addressing up to 64K Bytes
of Memory

The tntel^ 8080A is a complete 8-bit parattel central processing uni t (CPU). It is fabricated on a single LSI ch ip using Intel's

n-channel silicon gate IVIOS process. This offers the user a high performance solution to controt and processing applications.

The 8080A contains six 8-bit general purpose working registers and an accumulator . The six general purpose registers may be

addressed individually or in pairs providing both single and doub le precision operators. Ar i thmet ic and logical instructions set

or reset four testable flags. A fifth flag provides decimal arithmetic operat ion.

The 8080A has an external stack feature wherein any port ion o f memory may be used as a last in/first ou t stack to store/

retrieve the contents of the accumulator , ftags, program counter and all of the six general purpose registers. The sixteen bit

stack pointer controts the addressing of this external stack. This stack gives the 8080A the abil ity to easily handle mul t ip le

tevet priority interrupts by rapidly storing and restoring processor status. It also provides almost un l imi ted subrout ine nesting.

This microprocessor has been designed t o simptify systems design. Separate 16-tine address and 8-line bi-directionat data

busses are used to facilitate easy interface to memory and I/O. Signats to control the interface to memory and t/O are pro-

vided directly by the 8080A . Ul t imate control of the address and data busses resides w i th the H O L D signat. It provides the

abil i ty to suspend processor operat ion and force the address and data busses into a high impedance state. This permits OR-

tying these busses wi th other control l ing devices for (DMA) direct memory access or multi-processor operat ion.

* Sixteen Bit Stack Pointer and Stack
Manipuiation instructions for Rapid
Switching of the Program Environment

* Decima!,Binary and Doubie
Precision Arithmetic

* Abitity to Provide Priority Vectored
interrupts

- 5 1 2 Directiy Addressed ! / 0 Ports

8 0 8 0 A C P U F U N C T t O N A L

B L O C K D t A G R A M

D7-0.
BI-DIRECTIONAL

0 A T A 6 U S

)S BIT)
INTERNAL DATA BUS

A
DATA BUS

BUFFER/LATCH

(88 tT i

INTERNAL DATA BUS

INSTRUCTION

REGISTER <8)

I z

INSTRUCTION

DECODER

AND

MACHINE

CYCLE

ENCODING

TIMING

AND

CONTROL

DATA BUS INTERRUPT HOLD WAIT

WRITE CONTROL CONTROL CONTROL CONTROL SYNC CLOCKS

MULTIPLEXER

TEMP REG.

Z W

TEMP REG.

5 REG.

C 181

REG.

a
D 18}

REG.

E 181

REG.

H <8)

REG.

L 18)

REG.

<16)
STACK POINTER

116)
PROGRAM COUNTER

INCREMENTER/DECREMENTER

ADDRESS LATCH ti6)

WR
i t t t t] t t)

tNTE INT H O L D H O L D W A I T SYNC M

ACK READY

i z
ADDRESS BUFFER

AlS-^p
ADDRESS BUS

REGISTER

' A R R A Y

2-13

S!L!CON GATE MOS 8080A

8 0 8 0 A F U N C T I O N A L P)N D E F t N t T t O N

The fo l lowing describes the func t ion o f all o f the 8 0 8 0 A I/O pins.

Several o f the descriptions refer t o internal t im ing periods.

A i g . A o (ou tpu t three-state)

A D D R E S S BUS; the address bus provides the address to memory

(up to 64K 8-bit words) or denotes the I /O device number for u p

t o 256 inpu t and 256 o u t p u t devices. Ag is the least significant

address bit.

D7-D0 (i npu t / ou tpu t three-state)

D A T A BUS; the data bus provides bi-directional c ommun i c a t i o n

between the CPU, memory , and I /O devices for instruct ions and

data transfers. Also , dur ing the first clock cycle of each mach ine

cycle, the 8 0 8 0 A ou tpu ts a status word on the data bus tha t de-

scribes the current mach ine cycle. Do is the least s ignif icant bit .

S Y N C (ou tpu t)

S Y N C H R O N I Z I N G S I G N A L ; the S Y N C pin provides a signal to

indicate the beginning of each mach ine cycle.

D B i N (ou tpu t)

D A T A BUS IN; the DB IN signal indicates t o external circuits tha t

the data bus is in the i npu t mode . This signal should be used t o

enable the gating of data on t o the 8 0 8 0 A data bus f r om memory

or t /O.

R E A D Y (input)

R E A D Y ; the R E A D Y signal indicates to the 8 0 8 0 A tha t valid

memo ry or i npu t data is available on the 8 0 8 0 A da ta bus. This

signal is used to synchronize the CPU w i th slower m e m o r y or I /O

devices. If after sending an address ou t the 8080A does no t re-

ceive a R E A D Y input , the 8 0 8 0 A will enter a W A I T state for as

long as the R E A D Y line is low. R E A D Y can also be used t o single

step the CPU.

W A) T (ou tpu t)

W A I T ; the W A I T signal acknowledges tha t the CPU is in a W A I T

state.

WR^ (ou tpu t)

W R I T E ; the W R signal is used for memory W R I T E or I /O o u t p u t

contro l . The data on the data bus is stable whi le the W R signal is

active low (WR = 0).

H O L D (input)

H O L D ; the H O L D signal requests the CPU to enter the H O L D

state. The H O L D state allows an external device t o gain control

o f t he 8 0 8 0 A address and data bus as soon as the 8 0 8 0 A has com-

p e t e d its use o f these buses for the current mach ine cycle. It is

recognized under the fo l lowing cond i t ions :

* the CPU is in the H A L T state.

* the CPU is in the T2 or TW state and the R E A D Y signal is active.

As a result o f entering the H O L D stpte the CPU A D D R E S S BUS

(A15-A0) and D A T A BUS (D7-D0) will be in their high impedance

state. The CPU acknowledges its state w i th the H O L D AC-

K N O W L E D G E (H L D A) pin.

H L D A (ou tpu t)

H O L D A C K N O W L E D G E ; the H L D A signal appears in response

t o the H O L D signal and indicates tha t the data and address bus

!NTEL

8080A

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

-O A n

-O A n

*<3 A ^

-o A i s

-O A9

*0 Ag

-O Ay

-O Ag

* 0 Ag

< * 0 A 4

-O A3

-O +12V

-O A2

-O Ai

-O Ao

-O WAIT

-O READY

-O HLDA

Pin Conf igurat ion

will go to the high impedance state. The H L D A signal begins at:

* T3 for R E A D memory or input .

* The Clock Period fo l lowing T3 for W R I T E memory or OUT-

PUT operat ion .

In either case, the H L D A signal appears after the rising edge of

and high impedance occurs after the rising edge of 02-

tNTE (ou tpu t)

I N T E R R U P T E N A B L E ; indicates the content of the internal inter-

rupt enable f l ip / f lop . This f l ip / f lop may be set or reset by the En-

able and Disable Interrupt instruct ions and inhibi ts interrupts

f rom being accepted by the CPU when it is reset. It is auto-

matical ly reset (disabling further interrupts) at t ime T1 of the in-

struct ion fetch cycle (M1) when an interrupt is accepted and is

also reset by the R E S E T signal.

tNT (input)

I N T E R R U P T R E Q U E S T ; the CPU recognizes an interrupt re-

quest on this line at the end of the current instruct ion or whi le

halted. If the CPU is in the H O L D state or if the Interrupt Enable

f l ip / f lop is reset it wil l not honor the request.

R E S E T (inpu t)M]

RESET ; whi le the R E S E T signal is activated, the con ten t of the

program counter is cleared. After R E S E T , the program wilt start

at locat ion 0 in memory . The INTE and H L D A f l ip/ f lops are also

reset. Note that the flags, accumula tor , stack pointer , and registers

are no t cleared.

Vss G round Reference.

V p o +12 + 5% Volts.

V c c +5 + 5% Volts .

Vga -5+5% Vol ts (substrate bias).

. 02 2 externally supplied clock phases, (non TTL compat ib le)

5-14

S!L!CON GATE MOS 8080A

ABSOLUTE MAXtMUM RATtNGS*

Temperature Under Bias 0 ° C t o + 7 0 ° C

StorageTemperature - 6 5 ° C t o + 1 5 0 ° C

All i npu t or Ou t pu tVo l t a ges

W i t h R e s p e c t t o V B B - 0 . 3 V t o + 2 0 V

Vcc- VDD and Vgg With Respect to VgB -0 .3V to +20V

PowerDiss ipat ion 1.5W

*COMAVF/Vf.- SfressesaAo^e f/?ose //sfeo'under "/SAso/^fe AVax/-

/?af/ngrs" m a / cat/se pe rmanen t damagre fo f/?e det/zce.

7/?/$ /s a stress raf/'n^ or?// a nd ^7ncf/'ona/ operaf/on o / f/?e de-

i//ce a t f/?ese or a n / of/?er conoVf/'cns abot/e t/7ose /nd/cafed /n

f/?e operaf/ona/ secf/ons o / f/?/s spec/f/caf/or? /s n o f /mp//ec/. Ex-

posure fo abso/tvfe w a x / m u m raf/ng' conoVf/ons /or exfended

per/bo's m a / a/fecf dew'ce re//a^///f/.

D C. CHARACTER)ST!CS

Ta = 0°C to 70°C, V o o = +12V + 5%, Vcc = +5V ± 5%, Vgs = -5V ± 5%, Vss = 0V , Unless Otherwise Noted.

Symbo l Parameter Min . Typ. Max. Uni t Test Cond i t i on

VlLC Clock Input Low Voltage Vss-1 Vss+0.8 V

VlHC Clock Input High Voltage 9.0 VoD + 1 V

ViL Input Low Voltage Vss-1 Vgg+0.8 V

V,H input High Voltage 3.3 Vcc+1 V

VOL Ou t pu t Low Voltage 0.45 V
loL = 1 . 9mA on all ou tpu ts .

VoH O u t p u t H ighVo l t age 3.7 V I O H = - 1 5 0 ^ A .

b D (A V) Avg. Power Supply Current (VQ^) 40 70 m A

Operat ion

Tcy = .48 /usee
'CC(AV) Avg. Power Supply Current (Vcc) 60 80 m A

Operat ion

Tcy = .48 /usee

iBBfAV) Avg. Power Supply Current (VsB) .01 1 m A

Operat ion

Tcy = .48 /usee

'lL Input Leakage ±10 Vss ^ V ^ < Vcc

'CL Clock Leakage ±10 ^ A Vss < VcLOCK ^ VoD

I D J 2] Data Bus Leakage in Inpu t Mode -100

-2.0

HA

m A

Vss < V , V g g + 0 .8V

V s s + 0 . 8 V < V , N < V c c

'FL
Address and Data Bus Leakage

During H O L D

+10

-100
^ A

VADDR/DATA = V c c

VADDR/DATA = Vss + 0 .45V

CAPACiTANCE
T^ = 25° C Vcc = VoD V g g = 0 V , V B B = - 5 V

Symbo l Parameter Typ. Max. Uni t Test Cond i t ion

Clock Capacitance 17 25 pf f c = 1 M H z

ClN Input Capacitance 6 10 pf Unmeasured Pins

CoUT O u t p u t Capacitance 10 20 Pf Returned to Vgg

NOTES:

1. The RESET signal must be active for a minimum of 3 clock cycles.

2. When DBIN is high and V)N > Vit-i an internal active pull up will

be switched onto the Data Bus.

3. At supply/ATA = -0.45%/°C.

TYPICAL SUPPLY CURRENT VS.

TEMPERATURE, NORMALIZED.f3l

+25 +50

AMBIENT TEMPERATURE (°C)

DATA BUS CHARACTERISTIC

DURING DBIN

5-15

S!L!CON GATE MOS 8080A

A.C. CHARACTERtSUCS

T a = 0 °C to 70°C , V o o = +12V + 5%, Vcc = +5V ± 5%, Vge = -5V + 5%, Vgg = OV, Unless Otherwise Noted

Symbo l Parameter Min . Max. Uni t Test Cond i t i on

tcy[3] Clock Period 0 .48 2.0 ^sec

- C L - 1 0 0 p f

- C L = 50p f

tr-tf Clock Rise and Fall T ime 0 50 nsec

- C L - 1 0 0 p f

- C L = 50p f

0 l P u l s e W i d t h 60 nsec

- C L - 1 0 0 p f

- C L = 50p f

*4<2 02 Pulse Wid th 220 nsec

- C L - 1 0 0 p f

- C L = 50p f

t o i Delay 01 to 02 0 nsec

- C L - 1 0 0 p f

- C L = 50p f

t p 2 Delay 02 t ° 01 70 nsec

- C L - 1 0 0 p f

- C L = 50p f

t o 3 Delay 0-) to 02 Leading Edges 80 nsec

- C L - 1 0 0 p f

- C L = 50p f

t D A ^ ! Address O u t p u t Delay From 02 200 nsec
- C L - 1 0 0 p f

- C L = 50p f

t o o Data O u t p u t Delay From 02 220 nsec
- C L - 1 0 0 p f

- C L = 50p f
t D C ^ ' Signal O u t p u t Delay From 01, or 02 (SYNC, WR.WAtT, HLDA) 120 nsec

- C L - 1 0 0 p f

- C L = 50p f
t o F ^] DBIN Delay From 02 25 140 nsec

- C L - 1 0 0 p f

- C L = 50p f

Delay for Inpu t Bus t o Enter I npu t Mode tDF nsec

- C L - 1 0 0 p f

- C L = 50p f

tDS1 Data Se tup T ime Dur ing 01 and DB IN 30 nsec

- C L - 1 0 0 p f

- C L = 50p f

[14]
U M i N G W A V E F O R M S (Note: T iming measurements are made at the fo l lowing reference voltages: C L O C K " 1 " = 8 .0V

" 0 " = 1.0V; INPUTS " 1 " = 3 .3V, " 0 " = 0 .8V; OUTPUTS " 1 " - 2 .0V, " 0 " = 0.8V.)

a . A

- f
'DC 'DC

r

A

r

L

'nsr*—"

A

i .

t .

'<! — :

5-16

S!L!CON GATE MOS 8080A

A C . CHARACTERtSnCS (Continued)

TA = 0°C to 70°C, V o o = +12V ± 5%, Vcc = +5V ± 5%, Vgg -5V + 5%, Vgg = OV, Un!ess Otherwise Noted

Symbo ! Parameter Min . Max. Uni t Test Cond i t ion

*DS2 Data Setup T ime to 02 Dur ing DB IN 150 nsec

CL = 50pf

t D H ' ^ Data Hold T ime From 02 During DB IN [1] nsec

CL = 50pf t ,E[2l INTE O u t p u t Delay From 02 200 nsec CL = 50pf

tRS R E A D Y Setup Time During 02 120 nsec

CL = 50pf

^HS H O L D Setup T ime to 02 140 nsec

CL = 50pf

t is INT Setup T ime During 02 (During in Halt Mode) 120 nsec

CL = 50pf

tH Hold T ime From 02 (READY, INT, HOLD) 0 nsec

CL = 50pf

tFD Delay to Float During Hold (Address and Data Bus) 120 nsec

CL = 50pf

t A W ^ ' Address Stable Prior to W R [5] nsec

_ C L = I 00p f : Address, Data

C[_=50pf: W R , H L D A , D B i N

t o w ^ O u t p u t Data Stable Prior to WR [6] nsec

_ C L = I 00p f : Address, Data

C[_=50pf: W R , H L D A , D B i N

t w o ^ ' Ou t p u t Data Stable From WR [7] nsec

_ C L = I 00p f : Address, Data

C[_=50pf: W R , H L D A , D B i N
t W A ^ Address Stable From WR [7] nsec

_ C L = I 00p f : Address, Data

C[_=50pf: W R , H L D A , D B i N

tHF H L D A to Float Delay [8] nsec

_ C L = I 00p f : Address, Data

C[_=50pf: W R , H L D A , D B i N

t W F ^ WR to Float Delay [9] nsec

_ C L = I 00p f : Address, Data

C[_=50pf: W R , H L D A , D B i N

t A H ^ ' Address Hold T ime After DB IN During H L D A -20 nsec

_ C L = I 00p f : Address, Data

C[_=50pf: W R , H L D A , D B i N

D7 0. f--

SYNC

A

N O T E S :

2. Load Circuit.

+5V

8080A o .
OUTPUT I

3 'CY = 'D3 + 'r<(<2 + '<<<2 + tf%2 + to2 + > 480ns.

TYPICAL A OUTPUT DELAY VS. A CAPACITANCE
+20

^SPEC

'

A CAPACITANCE (pf)

a) Maximum output rise time from .8V to 3.3V = 100ns @ C)_ = SPEC.
b) Output delay when measured to 3.0V = SPEC +60ns @ C[_ = SPEC.
c) If Ci_ # SPEC, add ,6ns/pF if C[_> Cspgc. subtract 3ns/pF (from modified delay) if C[_ < Cgpgc

5. tp,w = 2tcY-tD3-tr<H-140nsec.
6. tDW = tCY-'D3-*r^2*170nsec.

7. If not HLDA, tWD = tWA = tD3 + tr^2 +10ns. If HLDA, two = t\̂A =

3. tHF = tD3 + *r<̂ 2 -50ns.

9. t^F = tD3 + t^2

5-17

S!L!CON GATE MOS 8080A

)NSTRUCT!ON SET

The accumulator group instructions include arithmetic and

logical operators with direct, indirect, and immediate ad-

dressing modes.

Move, load, and store instruction groups provide the ability

to move either 8 or 16 bits of data between memory, the

six working registers and the accumulator using direct, in-

direct, and immediate addressing modes.

The ability to branch to different portions of the program

is provided with jump, j ump conditional, and computed

jumps. Also the ability to call to and return from sub-

routines is provided both conditionally and unconditionally.

The RESTART (or single byte call instruction) is useful for

interrupt vector operation.

Doubie precision operators such as stack manipulat ion and

double add instructions extend both the arithmetic and

interrupt handting capability of the 8080A. The ability to

increment and decrement memory, the six general registers

and the accumulator is provided as well as extended incre-

ment and decrement instructions to operate on the register

pairs and stack pointer. Further capability is provided by

the ability to rotate the accumulator left or right through

or around the carry bit.

Input and output may be accomplished using memory ad-

dresses as I/O ports or the directly addressed I/O provided

for in the 8080A instruction set.

The following special instruction group completes the 8080A

instruction set: the NOP instruction, HALT to stop pro-

cessor execution and the D A A instructions provide decimal

arithmetic capability. STC allows the carry flag to be di-

rectly set, and the CMC instruction allows it to be comple-

mented. CMA complements the contents of the accumulator

and XCHG exchanges the contents of two 16-bit register

pairs directly.

Data and instruction Formats

Data in the 8080A is stored in the form of 8-bit binary integers. Ail data transfers to the system data bus will be in the

same format.

D? Dg D5 D4 D3 D2 D1 Do

DATA W O R D

The program instructions may be one, two, or three bytes in length. Multiple byte instructions must be stored

in successive words in program memory. The instruction formats then depend on the particular operation

executed.

One Byte Instructions

D? Dg D5 D4 D3 D2 D1 Do

Two Byte Instructions

D? Dg D5 D4 D3 D2 D1 Do

D? Dg D5 D4 D3 D2 D1 Do

Three Byte Instructions

D? Dg D5 D4 D3 D2 D1 Do

D? Dg D5 D4 D3 Dg D1 Do

D? Dg D5 D4 D3 D2 D1 Do

OP CODE

OP CODE

O P E R A N D

OP CODE

LOW A D D R E S S O R O P E R A N D 1

HIGH A D D R E S S O R O P E R A N D 2

TYPICAL INSTRUCTIONS

Register to register, memory refer-

ence, arithmetic or logical, rotate,

return, push, pop, enable or disable

Interrupt instructions

Immediate mode or I/O instructions

Jump , call or direct load and store

instructions

For the 8080A a logic " 1 " is defined as a high level and a logic " 0 " is defined as a low level.

5-18

S!L!CON GATE MOS 8080A

)NSTRUCT!ON SET

Summary of Processor tnstructions

Instruction Code ! ' ! Clock[2!
Mnemonic Description 0? 06 Os 04 03 02 Oi Do Cycles Mnemonic

M 0 V „ . , 2 Move register to register 0 1 D D 0 s s S 5 RZ

M O V M , r Move register to memory 0 1 1 1 0 S s s 7 RNZ
M O V r . M Move memory to register 0 1 D D 0 1 1 0 7 RP
HLT Ha l t , 0))] 0] 1 0 7 HM
MVI r Move immediate register 0 0 0 0 0 1 1 0 7 RPE
MVI M Move immediate memory 0 0 1 1 0 1 1 0 10 RPO
1NR r Increment register 0 0 D 0 D 1 0 0 5 RST
OCR r Decrement register 0 0 0 D D 1 0 1 5 IN
INR M Increment memory 0 0 1 1 0 1 0 0 10 OUT
DCR M Decrement memory 0 0 1 1 0 1 0 1 10 LXI B
A D D r Add register to A 1 0 0 0 0 s s s 4

ADC r Add register to A with carry 1 0 0 0 1 s s s 4 LXI 0
S U B r Subtract register f r o m A ! 0 0 ! 0 s s s 4
S B B r ! 0 0 1 1 s s s 4 LXI H

A N A r And register with A 1 0 1 s s s 4 LXI SP
X R A r Exclusive Or register with A 1 0 1 0 1 s s s 4 PUSH B
O R A r Or register with A 1 0 1 1 0 s s s 4

CMPr Compare register w i t h A 1 0 1 1 ! s s s 4 PUSH 0
A D D M Add memory to A 1 0 0 1 1 0 7

ADC M Add memory to A with carry 1 0 0 0 1 1 1 0 7 PUSH H
SUB M Subtract memory f r o m A 1 0 0 1 0 1 I 0 7

S B B M 1 0 0 1 1 1 1 0 7 PUSH PSW

A N A M And memory with A 1 0 1 1 1 0 7 POPB
X R A M Exclusive Or memory with A 1 0 ! 0 ! ! ! 0 7

O R A M Or memory with A 1 0 1 1 0 1 1 0 7 P O P D
C M P M Compare memory with A 1 0 1 1 1 1 1 0 7

AOI Add immediate to A 1 1 0 1 ! 0 7 P O P H
ACI A,M immediate to A with 1] 0 0 1 1 1 0 7

POPPSW
SUI Subtract immediate (rom A 1 1 0 1 0 1 1 0 7
SBI 1 1 0 1 ! 1 1 0 7 STA

LDA
AMI And immediate with A 1 1 1 1 1 0 7 XCHG
XR I

A

1 1 1 0 1 1 1 0 7

XTHL
OR I Or immediate with A 1 1 1 1 0 1 1 0 7 SPHL
CPI Compare immediate w i t h A 1 1 1 1 1 1 1 0 7 PCHL
RLC Rotate A left 0 0 0 1 1 1 4 D A D B
RRC Ro ta teAr igh t 0 0 0 0) 1 1 1 4 D M 0
HAL Ro t a t eA l e f t through carry 0 0 0 1 0 1 1 1 4 DAD H
RAR Rotate A right through 0 0 0 1 1] 1 ! 4 D A D S P

S T A X B
JMP Jump unconditional 1 1 0 0 1 1 10 STAX D
JC Jump on carry 1 1 0 1 1 0 1 0 10 L D A X B
JNC Jump on no carry 1] 0 1 0 0 1 0 10 L O A X O
J Z Jump on zero ! ! 0 0 1 0] 0 10 I W X B
JNZ Jump on no zero 1 1 0 0 1 0 10 INX D
JP Jump on positive 1 1 1 1 0 0 1 0 10 INX H
JM Jump on minus 1 1 1 1 1 0 1 0 10 I N X S P
JPE Jump on parity even 1 1 1 0 1 0 1 0 10 OCX B
JPO Jump on parity odd 1 ! 1 0 1 0 10 O C X O
CALL Call unconditional 1) 0 0 1 ! 0 1 17 D C X H
CC Call on carry ! 1 0 1 1 1 0 0 11/17 O C X S P
CNC Call on no carry 1 0 1 0 1 0 0 11/17 CMA
CZ Call on zero 1 1 0 0 1 1 0 0 11/17 STC
CNZ Call on no zero 1 1 0 1 0 0 11/17 CMC
CP Calf on positive ! t) t 0 ! 0 0 11/17 OAA
CM Call on minus 1 1 1 1 1 1 0 0 11/17 SHLD
CPE Call on parity even 1 1 1 0 1 1 0 0 11/17 LHLO
CPO Call on parity odd 1 1 1 1 0 0 11/17 El
RET Return 1 1 0 0 1 0 0 1 10 DI
RC Return on carry 1 ! 0 1 1 0 0 0 5/11 WOP
RNC Return on no carry 1 1 0 1 0 0 0 0 5/11

Oy Ds Os D4 D3 D: Di Do
Mochta
Cycles

Restart

Output

Pair B & C

Pair D & E

Pair H & L

Exchange O & E . H & L

A d d B & C t o H & L

Add 0 & E to H & L

Add H & L to H & L

Decrement B & C

Store H & L direct

Load H & L direct

1 0 0 1 0 0 0 5/11
1 0 0 0 0 c 0 5/11
1 1 1 0 0 0 0 5/11

1 1) 1 0 0 0 5/11
1 1 1 0 0 0 5/11
1 1 0 0 0 0 5/11
1 A A 1 1 1 11

1 0 1 1 0 1 1 10
1 0 1 0 0 1 1 10

0 0 0 0 0 0 1 10

0 0 0 1 0 0 0 1 10

0 0 1 0 0 0 1 10

0 0 1 1 0 0 0 1 10
1 1 0 0 1 0 1 11

1 1 0 1 0 1 0 1 11

1 1 1 0 1 0 1 11

1 1 1 1 0 1 0 1 11

1 1 0 0 0 0 1 10

1 1 0 1 0 0 0 1 10

1 1 1 0 0 0 1 10

1 1 1 1 0 0 0 1 10

0 0 1 1 0 0 1 0 13

0 0 1 1 1 0 1 0 13

1 1 1 1 0 1 1 4

1 1 ! 0 0 1 1 !8
1 1 1 1 1 0 0 1 5
1 1 1 1 0 0 1 5
0 0 1 0 0 1 10
0 0 1 1 0 0 1 10
0 0 1 1 0 0 1 10
0 0 1 1 1 0 0 1 10
0 0 0 0 0 1 0 7

0 0 0 1 0 0 1 0 7

0 0 0 1 0 1 0 7

0 0 0 1 1 0 1 0 7

0 0 0 0 0 1 ! 5
0 0 0 1 0 0 1 1 5
0 0 1 0 0 1 1 5
0 0 1 1 0 0 1 1 5
0 0 0 1 0 1 1 5
0 0 0 1 1 0 1 1 5
0 0 1 1 0 1 1 5
0 0 1 1 1 0 1 1 5

0 0 1 1 1 1 1 4

0 0 1 1 0 1 1 1 4

0 0 1 1 1 1 1 1 4

0 0 ! 0 1)) 4

0 0 1 0 0 1 0 16

0 0 1 1 0 1 0 16

1 1 1 1 1 0 1 1 4

1 1 1 1 0 0 1 1 4

0 0 0 0 0 0 0 0 4

NOTES: 1. D D D or SSS - 0 0 0 B - 0 0 1 C - 010 D - 0 1 1 E - 100 H - 101 L - 110 Memory - 111 A.

2. Two possible cycle times, (5/11) indicate instruction cycles dependent on condit ion flags.

5 - 9

Schottky Bipotar 8224

CLOCK GENERATOR AND DR!VER

FOR 8080A CPU

" S i ng i e Ch i p C !ock Genera to r /Dr iver

for 8080A CPU

* Power-Up Reset for CPU

* Ready Synchron i z i ng Ftip-Fiop

* Advanced S ta tus S t robe

* OsciHator Ou tpu t for Externa)

Sys tem Timing

* Crysta! Contro i ied for S t ab i e Sys tem

Opera t i on

* R e d u c e s Sys tem P a c k a g e Coun t

The 8224 is a singie chip ctock generator/driver for the 8080A CPU.)t is controtled by a crysta), setected by

the designer, to meet a variety of system speed requirements.

Atso inciuded are circuits to provide power-up reset, advance status strobe and synchronization of ready.

The 8224 provides the designer with a significant reduction of packages used to generate docks and timing
for 8080A.

P!N C O N F t G U R A T t O N B L O C K DtAGRAtVt

[l ? > XTAL1

X T A L 2 —

O S C I L L A T O R

RESET I 1 16 ^ V c c E3> TANK

RES IN I 2 15 1 X T A L 1

R D Y I N 3 14 I X T A L 2

R E A D Y ^ 4 13 I TANK

S Y N C

8224
lose S Y N C 5 12 lose

^ ITTLI I 6 11 Z M i
E > S Y N C

STSTBI 7 10
RES IN

G N D l 8 9 Z ^ D D

R D Y I N

CLOCK

GEM.

^ D <3, A

SCHMITT

INPUT

O

C O

D Q

C

-osc [1?>

- ^ (T T L) [T >

STSTB

- R E S E T

- R E A D Y

P!N N A M E S

RES IN RESET INPUT

RESET RESET OUTPUT

R D Y I N R E A D Y INPUT

R E A D Y R E A D Y OUTPUT

S Y N C SYNC INPUT

STSTB STATUS STB

(ACTIVE LOW)

(8080

^2 i C L O C K S

X T A L 1 j CONNECT IONS

{ FOR C R Y S T A L XTAL 2

j CONNECT IONS

{ FOR C R Y S T A L

TANK USED WITH O V E R T O N E XTAL

OSC O S C I L L A T O R OUTPUT

^2 tTTL) ^2 CLK (TTL LEVEL)

Vcc +5V

VDD +12V

G N D OV

5-1

SCHOTTKY B!POLAR 8224

FUNCT!ONAL DESCRtPTtON

Genera!

The 8224 is a single ch ip Clock Generator/Driver for the

8080A CPU. It contains a crystal-controlled oscillator, a

"d iv ide by n ine" counter, two high-level drivers and several

auxiliary logic funct ions.

Oscittator

The oscillator circuit derives its basic operating frequency

f rom an external, series resonant, fundamenta l mode crystal.

T w o inputs are provided for the crystal connections (XTAL1 ,

XTAL2) .

The selection of the external crystal frequency depends

main ly on the speed at which the 8080A is to be run at.

Basically, the oscillator operates at 9 times the desired pro-

cessor speed.

A simple formula to guide the crystal selection is:

1
Crystal Frequency = times 9

tCY

Example 1: (5 00n s t c y)

2mHz times 9 = 18mHz*

Example 2: (800ns t o y)

1 .25mHz times 9 = 11 .25mHz

Another input to the oscillator is T A N K . This input allows

the use overtone mode crystals. This type of crysta) gen-

erally has much lower " ga i n " than the fundamenta l type so

an external LC network is necessary to provide the addit ional

" g a i n " for proper oscillator operation. The external LC net-

work is connected to the T A N K input and is A C coupled to

ground. See Figure 4.

The formula for the LC network is:

The waveforms generated by the decode gating fo i low a

simple 2-5-2 digital pattern. See Figure 2. The clocks gen-

erated; phase 1 and phase 2, can best be thought of as con-

sisting of " un i t s " based on the oscillator frequency. Assume

that one " u n i t " equals the period of the oscillator frequency.

By mul t ip ly ing the number of " u n i t s " that are contained in

a pulse wid th or delay, times the period of the oscillator fre-

quency, the approximate t ime in nanoseconds can be derived.

The outputs o f the clock generator are connected t o two

high level drivers for direct interface to the 8080A CPU. A

TTL level phase 2 is also brought ou t 02 (TTL) for external

t iming purposes. It is especially useful in D M A dependant

activities. This signal is used to gate the requesting device on-

to the bus once the 8080A CPU issues the Hold Ack-

nowledgement (HLDA) .

Several other signals are also generated internally so tha t

op t imum t iming of the auxiliary flip-flops and status strobe

(STSTB) is achieved.

2?r V L C

The ou tpu t of the oscillator is buffered and brought out

on C S C (pin 12) so that other system t iming signals can be

derived f rom this stable, crystal-controlled source.

*When using crystals above 10mHz a small amount of frequency

"trimming" may be necessary to produce the exact desired fre-

quency. The addition of a small selected capacitance (3pF - 10pF)

in series with the crystal will accomplish this function.

C!ock Generator

The Clock Generator consists of a synchronous "d iv ide by

n i ne " counter and the associated decode gating to create the

waveforms of the two 8080A clocks and auxiliary t iming

signals.

,-T

osc.
FREQ.

1 I 2 I 3 !
"1 T

E X A M P L E : [8 0 8 0 500ns)

OSC = 18mH:/55ns

. r

5-2

SCHOTTKY B!POLAR 8224

STSTB (Status Strobe)

At the beginning of each machine cycle the 8080A CPU is-

sues status information on its data bus. This information

tells what type of action will take place during that machine

cycle. By bringing in the SYNC signal from the CPU, and

gating it with an interna) timing signal (<^1A), an active tow

strobe can be derived that occurs at the start of each ma-

chine cycle at the earliest possible moment that status data

is stable on the bus. The STSTB signal connects directly to

the 8228 System Controlter.

The power-on Reset also generates STSTB, but of course,

for a longer period of time. This feature allows the 8228 to

be automatically reset without additional pins devoted for

this function.

The R E A D Y input to the 8080A CPU has certain timing

specifications such as "set-up and ho ld" thus, an external

synchronizing flip-flop is required. The 8224 has this feature

built-in. The RDYtN input presents the asynchronous "wait

request" to the " D " type flip-flop. By clocking the flip-flop

with 02D, a synchronized R E A D Y signal at the correct in-

put level, can be connected directly to the 8080A.

The reason for requiring an external flip-flop to synchro-

nize the "wait request" rather than internally in the 8080

CPU is that due to the relatively long delays of IVtOS logic

such an imptementation woutd " rob " the designer of about

200ns during the t ime his logic is determining if a "wa i t "

is necessary. An external bipolar circuit built into the clock

generator etiminates most of this detay and has no effect on

component count.

Power-On Reset and Ready FNp-Ftops

A common function in 8080A Microcomputer systems is the

generation of an automatic system reset and start-up upon

initial power-on. The 8224 has a built in feature to accomp-

lish this feature.

An external RC network is connected to the RESIN input.

The slow transition of the power supply rise is sensed by an

interna) SchmittTrigger.Thiscircuit converts the stow trans-

ition into a clean, fast edge when its input level reaches a

predetermined vatue. The output of the Schmitt Trigger is

connected to a " D " type flip-flop that is ctocked with <^2D

(an internal timing signal). The flip-flop is synchronously

reset and an active high level that complies with the 8080A

input spec is generated. For manual switch type system Re-

set circuits, an active low switch closing can be connected

to the RESIN input in addition to the power-on RC net-

network.

[lS> XTAL1 —

[)4> XTAL2 —

[l3> TANK

-OSC [l2>

CLOCK
R E N
:9

SYNC -

RESIN -

[P> ROYtN -

SCHMITT
tMPUT

^ -"i s >

, : T T L . ' g >

L — ^ 1 STSTB [7 E>

-HESTT

- READY [7>

2tr JLC*
USED ONLY

EOR OVERTONE

CRYSTALS

OSC

<)<2 ITTL)

RDY IN

H Q h
' 1 3 10pF

i) IONLY NEEDED
I i ABOVE 10 MHz)

STSTB (TO 8228 PIN 1)

5-3

SCHOTTKY B!POLAR 8224

D.C. Characteristics

TA = 0 °C to 70°C ; V c c = +5.0V +5%; V o o = + 12V +5%.

Limits

Symbo l Parameter Min . Typ . Max. Units Test Cond i t ions

'F I npu t Current Loading - .25 m A Vp - .45V

!R Input Leakage Current 10 ^ A Vp = 5 .25V

Vc Input Forward C l amp Voltage 1.0 V lc = - 5 m A

V,L Inpu t " L o w " Voltage .8 V Vcc = 5.0V

V)H I npu t " H i g h " Voltage 2.6

2.0

V Reset I npu t

All Other Inputs

VlH-ViL R E D IN Input Hysteresis .25 m V = 5 .0V

VOL O u t p u t " L o w " Voltage .45

.45

V

V

(<?h.<h)- Ready, Reset, STSTB

loL =2 .5mA

All O ther Ou tpu t s

loL = 15mA

VoH O u t p u t " H i g h " Voltage

- <̂ 2

R E A D Y , RESET

AH Other Ou tpu t s

9 .4

3 .6

2.4

V

V

V

loH = -100nA

loH = - 1 0 0 ^ A

loH = - 1 m A

' s c ^ ' O u t p u t Shor t Circuit Current

(AH Low Voltage Ou tpu t s On ly)

-10 -60 m A V o = ov
Vcc = 5 .0V

<cc Power Supp ly Current 115 m A

b D Power Supp ly Current 12 m A

Note: 1. Caution, and output drivers do not have short circuit protection

CRYSTAL REQUtREMENTS

Tolerance: . 0 0 5 % a t 0 ° C - 7 0 ° C

Resonance: Series (Fundamenta l) *

Load Capacitance: 20-35pF

Equivalent Resistance: 75-20 ohms

Power Dissipation (Min) : 4 m W

*With tank circuit use 3rd overtone mode.

5-4

SCHOTTKY B!POLAR 8224

A.C. Characteristics

Vcc = +5-0V + 5%; Von = +12.0V + 5%; T^ = 0°C to 70° C

Symbo! Parameter

Limits

Units

Test

Cond it ions Symbo! Parameter Min. Typ. Max. Units

Test

Cond it ions

01 Pulse Width ^ Y - 2 0 n s
9

ns

C)_ = 20pF to 50pF

02 Pulse Width ^ Y - 3 5 n s
9

ns

C)_ = 20pF to 50pF

tD1 01 to 02 Delay 0 ns

C)_ = 20pF to 50pF tD2 02 to 01 Delay ^ V - 1 4 n s
9

ns

C)_ = 20pF to 50pF

tD3 01 to 02 Delay
2tcy

9
^ Y + 20ns

9

ns

C)_ = 20pF to 50pF

tR 01 and 02 Rise Time 20

ns

C)_ = 20pF to 50pF

t f 01 and 02 Fall Time 20

ns

C)_ = 20pF to 50pF

02 to 02 (TTL) Delay - 5 +15 ns 02TTL,CL=3O

R i = 3 0 0 H

R 2 = 6 0 0 H

tDSS 02 to STSTB Delay -30ns
9

6tcy

9

tpw STSTB Pulse Width ^ Y - 1 5 n s
9

STSTB,CL=15pF

R i = 2K

R2 = 4K
^DRS

RDYIN Setup Time to

Status Strobe
50ns

9

STSTB,CL=15pF

R i = 2K

R2 = 4K

t D R H
RDYIN Hold Time

After STSTB

4tcy

9

STSTB,CL=15pF

R i = 2K

R2 = 4K

tDR
R D Y I N o r R E S I N t o

02 Delay
^ Y - 2 5 n s

9

Ready & Reset

CL=10pF

R l = 2 K

R 2 = 4 K

tCLK CLK Period
tcy

I T

^max
Maximum Oscillating

Frequency
27 MHz

Cin Input Capacitance 8 PF Vcc=+5.0V

V o o = + 1 2 V

VmAS=2.5V

f=1MHz

T f I GMD I C M D

5-5

SCHOTTKY B!POLAR 8224

W A V E F O R M S

VOLTAGE MEASUREMENT POINTS: <%<1, <%<2 Logic "0 " = 1.0V, Logic " 1 " = 8.0V. Alt other signals measured at 1.5V.

EXAMPLE:

A.C. Characteristics (For t c y = 488 .28 ns)

= 0 ° C to 70 °C ; V c c = +5V +5%; V p o = +12V +5%.

Limits

Symbo l Parameter Min . Typ . Max. Units Test Cond i t ions

01 Pulse W id t h 89 ns t c y = 4 8 8 . 2 8 n s

t<%2 02 Pulse W id t h 236 ns

t o i Delay 01 to 02 0 ns

tD2 Delay 02 to 01 9 5 ns _ 01 & 02 Loaded to

Delay 0 i t o 02 Leading Edges 109 129 ns
C)_ = 20 t o 50pF

tr O u t p u t Rise T ime 20 ns

tf O u t p u t Fall T ime 20 , ns

tDSS 02 to STSTB Delay 296 326 ns

02 to 02 (TTL) Delay -5 +15 ns

tpw Status S t robe Pulse Wid th 40 ns
Ready & Reset Loaded

to 2 m A / 1 0 p F tDRS R D Y i N Se t u pT ime to STSTB -167 ns

Ready & Reset Loaded

to 2 m A / 1 0 p F

tDRH R D Y I N Hold T ime after STSTB 217 ns AH measurements

tDR R E A D Y or R E S E T

t o 02 Delay

192 ns
referenced to 1.5V

unless specified

otherwise.

^MAX Oscil lator Frequency 18 .432 MHz

5-6

in t^J* Schottky Bipotar 8228

SYSTEM CONTROLLER AND BUS DR!VER

FOR 8080A CPU

Single Chip System Controi for
MCs;-80 Systems
Buiit-in Bi-Directionai Bus Driver
for Data Bus isoiation
Aitows the use of Muitipie Byte
instructions (e.g. CALL) for
interrupt Acknowiedge

User Seiected Singie Levei interrupt

Vector (RST 7)

28 Pin Duai in-Line Package

Reduces System Package Count

The 8228 is a singte chip system controtter and bus driver for MCS-80. It generates ail signais required to

directly interface MCS-80 family RAM, ROM, and I/O components.

A bi-directional bus driver is included to provide high system TTL fan-out. It also provides isolation of the

8080 data bus from memory and I/O. This allows for the opt imizat ion of control signals, enabling the sys-

tems deisgner to use stower memory and t/O. The isoiation of the bus driver also provides for enhanced

system noise immun i ty .

A user selected single level interrupt vector (RST 7) is provided to simplify real t ime, interrupt driven, smalt

system requirements. The 8228 also generates the correct control signals to allow the use of mult iple byte

instructions (e.g., CALL) in response to an tNTERRUPT A C K N O W L E D G E by t h e 8 0 8 0 A . This feature

permits large, interrupt driven systems to have an unlimited number of interrupt levels.

The 8228 is designed to support a wide variety of system bus structures and also reduce system package

count for cost effective, reliable, design of the MCS-80 systems.

PtN C O N F t G U R A T t O N 8228 BLOCK D t A G R A M

STSTB 1 28 D ^ c c

H L D A 2 27 ^ l /OW

W R 3 26 MEMW

DBIN 4 25 ^ i /OR

DB4 ^ 5 24 2] M E M R

D4 6 23 INTA

DB7 ^

D I E

7

8

22

8228
21

BUSEN

^ D 6

DB3 9 20 DB6

10 19 D5

DB2 ^ 11 18 ^ DB5

D2 12 17 3D1

DBpE 13 16 ^ D B I

GND 14 15 HD0

CPU

DATA

BUS

MEM R

MEM W

I/O R

l /Ol^V

BUSEN

INTA

PtN NAMES

D7 DO DATA BUS 18080 SIDE) INTA INTERRUPT ACKNOWLEDGE

DB7 DBO DATA BUS [SYSTEM SIDE) HLDA H L D A I F R O M 8080)

l /OR I/O R E A D WR WR (FROM 8080)

l/OW I/O WRITE BUSEN BUS ENABLE INPUT

MEMR M E M O R Y READ STSTB STATUS STROBE (FROM 8224)

MEMW M E M O R Y WRITE rvcc +5V

DBIN DBIN [FROM 8080) GND 0 VOLTS

2-7

SCHOTTKY B!POLAR 8224

FUNCT!ONAL DESCR!PHON

Genera!

The 8228 is a single chip System Controlter and Data Bus

driver for the 8080 Microcomputer System. It generates all

control signals required to directly interface MCS-80^ family

RAM , ROM, and I/O components.

Schottky Bipolar technology is used to maintain low delay

times and provide high output drive capability to support

small to medium systems.

Bi-Directiona) Bus Driver

An eight bit, bi-directional bus driver is provided to buffer

the 8080 data bus from Memory and I/O devices. The 8080A

data bus has an input requirement of 3.3 volts (min) and

can drive (sink) a max imum current of 1 .9mA. The 8228

data bus driver assures that these input requirements will

be not only met but exceeded for enhanced noise immuni ty .

Also, on the system side of the driver adequate drive cur-

rent is available (10mA Typ.) so that a large number of

Memory and I/O devices can be directly connected to the

bus.

The Bi-Directional Bus Driver is controlled by signals from

the Gating Array so that proper bus f low is maintained and

its outputs can be forced into their high impedance state

(3-state) for DMA activities.

Status Latch

At the beginning of each mach inecyc le the8080CPU issues

"status" information on its data bus that indicates the type

of activity that will occur during the cycle. The 8228 stores

this information in the Status Latch when the STSTB input

goes " l ow" . The output of the Status Latch is connected to

the Gating Array and is part of the Control Signal generation.

Gating Array

The Gating Array generates controt signals (MEM R, MEM W,

I/O R, I/O W and INTA) by gating the outputs of the Status

Latch with signals from the 8080 CPU (DBIN, W R , and

HLDA) .

The " read" control signals (MEM R, I/O R and INTA) are

derived from the logical combinat ion of the appropriate

Status Bit (or bits) and the DBIN input from the 8080 CPU.

The "wr i te" control signals (MEM W, I/O W) are derived

from the logical combinat ion of the appropriate Status Bit

(or bits) and the WR input from the 8080 CPU.

All Control Signals are "active l ow" and directly interface

to MCS-80 family RAM, ROM and I/O components.

The INTA control signal is normally used to gate the "inter-

rupt instruction por t " onto the bus. It also provides a

special feature in the 8228. If only one basic vector is need-

ed in the interrupt structure, such as in small systems, the

8228 can automatically insert a RST 7 instruction onto the

bus at the proper time. To use this opt ion, simply connect

the INTA output of the 8228 (pin 23) to the +12 volt

supply through a series resistor (1K ohms). The voltage is

sensed internally by the 8228 and logic is "set-up" so that

when the DBIN input is active a RST 7 instruction is gated

on to the bus when an interrupt is acknowledged. This

feature provides a single interrupt vector with no additional

components, such as an interrupt instruction port.

When using C A L L as an interrupt instruction the 8228

will generate an)NTA putse for each of the three bytes.

The BUSEN (Bus Enable) input to the Gating Array is an

asynchronous input that forces the data bus ou tpu t buffers

and control signal buffers into their high-impedance state

if it is a "one " . If BUSEN is a " ze ro " normal operation of

the data buffer and controt signals take place.

8228 BLOCK D I A G R A M

CPU

DATA

BUS

5-8

SCHOTTKY B!POLAR 8224

8080A

CPU

8228
BI-DIRECTIONAL

BUS DRIVER

13

16**
11*"

9^*
5

18

20

-DB„

-DB̂
-DB̂
-DBg
-DB„

-DB^
-DBg
-DB-

- D A T A BUS

(FROM 8224) STATUS STROBE -

INTA

- MEM R

MEM W

I/O R

iTow

CONTROL BUS

)NTA

(NONE)

!NTA

) /OW

! /0 R

MEMW

MEIV! R

MEMW

MEM R

MEM R

CONTROL

StGNALS

5-9

SCHOTTKY B!POLAR 8224

W A V E F O R M S

STATUS STROBE

8080 DATA BUS

DBIN

INTA. IOR , M E M R

H L D A

D U R I N G H L D A

SYSTEM BUS D U R I N G R E A D

8080 BUS D U R I N G R E A D

WR

IOW O R MEM W

8080 BUS D U R I N G WRITE

SYSTEM BUS D U R I N G WRITE

SYSTEM BUS ENABLE

SYSTEM BUS OUTPUTS

VOLTAGE MEASUREMENT POINTS: DQ-D7 (when outputs) Logic "0 " = 0.8V, Logic " 1 " = 3.0V. All other signals measured

at 1.5V.

A.C. Characteristics T^ = 0°C to 70'C; Vcc = 5V +5%.

Limits

Symbo l Parameter Min . Max. Uni ts Cond it ion

tpw Wid th of Status Strobe 22 ns

tss Setup T ime, Status Inputs Dg-Dy 8 ns

^SH Hold T ime, Status Inputs Dg-Dy 5 ns

tDC Delay from STSTB to any Contro l Signal 20 60 ns CL = 100pF

tRR Delay from DB IN to Contro l Ou t pu t s 30 ns CL = 1 0 0 p F

tRE Delay f rom D B I N to Enable/Disable 8080 Bus 4 5 ns CL = 25pF

tRO Delay f rom System Bus to 8080 Bus during Read 30 ns CL = 25pF

tWR Delay from WR to Control Ou t pu t s 5 45 ns CL = 100pF

tWE Delay to Enable System Bus DB0-DB7 after STSTB 30 ns CL = 100pF

tWD Delay from 8080 Bus Do-D? to System Bus

DBQ-DBy during Write 5 40

ns CL = 100pF

tE Delay f rom System Bus Enable to System Bus DBQ-DB7 30 ns CL = 100pF

^HD H L D A to Read Status Ou tpu t s 25 ns

^DS Setup Time, System Bus Inputs to H L D A 10 ns

tDH Hold Time, System Bus Inputs to H L D A 20 ns C L - 1 0 0 p F

5-10

/ v - / \ i

7 — \ / — \ / \ / \ / V

w

\

D C

y
RR t-—

y

< 3c

^ —

SCHOTTKY B!POLAR 8224

D.C. Characteristics T^ = 0°C to 70°C; Vcc = 5V ±5%.

Limits

Symbot Parameter IVIin. Typ . [11 Max. Uni t Test Cond i t ions

Vc Input C l amp Voltage, All Inputs .75 -1.0 V V c c = 4 . 7 5 V ; l c=-5mA

'F I npu t Load Current ,

STSTB 500 HA V c c = 5 . 25V

D 2 & Dg 750 juA V p = 0 .45 V

D o , D i , D 4 , D 5 ,

& D? 250

HA

Al l O ther Inputs 250 HA

'R I npu t Leakage Current

STSTB 100 HA V c c = 5 .25 V

DBo-DB? 20 ^ A Vp = 5 . 25V

AH Other Inputs 100 ^ A

VTH Inpu t Threshold Voltage, All Inputs 0 .8 2.0 V V c c ^ 5 V

' c c Power Supp l y Current 140 190 m A V c c = 5 . 2 5 V

VOL O u t p u t Low Voltage,

D0-D7 .45 V V c c = 4 . 7 5 V ; i o L = 2 m A

Alt O ther Ou t pu t s .45 V lot_ = 1 0 m A

VoH O u t p u t High Voltage,

Do-D? 3.6 3 .8 V V c c = 4 . 7 5 V ; l o H = - 1 0 ^ t A

Al l O ther Ou t pu t s 2.4 V loH = - t m A

'os Shor t Circui t Current , AH O u t p u t s 15 90 m A V c c = 5 V

b(off) Of f State O u t p u t Current ,

Al l Controt Ou t p u t s 100 juA V c c = 5 . 2 5 V ; V o = 5 . 2 5

-100 ;uA V o = . 4 5 V

!lNT INTA Current 5 m A (See Figure be low)

Note 1: Typical values are for T ^ = 25°C and nominal supply voltages.

Capacitance This parameter is periodically sampled and not 100% tested.

Limi ts

Symbo l Parameter Min . Typ . tU Max . Uni t

ClN Inpu t Capacitance 8 12 pF

CoUT
O u t p u t Capacitance

Contro l Signals
7 15 PF

I/O
I/O Capacitance

(D o r DB)
8 15 pF

TEST C O N D ! T) O N S : VgtAS = 2 .5V , Vcc = 5 .0V , T^ = 2 5 ° C , f = 1 MHz .

Note 2: For D0-D7: R1 = 4KH, R2 =

C ^=25pF . For all other outputs:

R l = 500H, R 2 = 1KH, C ^ = 100pF.

23

3—

A"

O

! N T A Test Circui t (for RST 7)

5 - 1 1

SCHOTTKY B!POLAR 8224

TANK -

OSC -

<TTL) -

R D Y I N -

RES IN - 0

+12V

+5V

G N D

G N D . -

+5V -

-5V -

+12V -

S Y S T E M D M A R E O . -

SYSTEM INT. R E Q . -

INT. ENABLE -

X T A L

15

8224

CLOCK

G E N E R A T O R

D R I V E R

16

10 15

24

4 23

1 12

5 19

INT

INTE

8080A

CPU

W A I T

R E A D Y

STATUS S T R O B E

A.

Ai

A,

A4

As

Ae

A?

As

A9

A12

A14

W R

DB IN

H D L A

9 17

8 12

7 10

3 6

4 19

5 21

6 8

+5V -

G N D -

8228
Bl D I R E C T I O N A L

BUS D R I V E R

SYSTEM

C O N T R O L

23

3—
24

3 —
26
3 —
25

3 —

A.

- A D D R E S S BUS

-DB„

- DBi

- DB̂

-DB3

- D B „

-DB^

- D B g

- DBy

INTA

- MEM R

- MEMW

- I / O R

- i/oliv

C O N T R O L BUS

8080A CPU Standard interface

5-12

