
/ \

computer
n o t e s
Votume3)ssue7

@ 1 9 7 8 P E R T E C C O M P U T E R C O R P O R A H O N
20630 Nordhoff Street
Chatsworth, C A 91311
(213) 998-1800

Editor: Marsha Sutton

Voiume 3, issue 7, January/ February 1978

Products or services, other than those of PERTEC COMPUTER CORPORATION,
advertised in Computer Notes magazine are not necessarily endorsed by PERTEC
COMPUTER CORPORATION, thereby relieving itself of all legal responsibility.

Computer Notes Jan/Feb 1978

!n This issue The Latest with CN
System Timing Modification for the M!TS/Altair88-DCDD Floppy Disk. 4

by Tom Durston

A. Copy/Rewrite Procedure 4

by Gale Schonfeld

B. Single Drive BASIC Diskette Rewrite Procedure 5

by Charles Vertrees

C. Single Drive DOS Diskette Rewrite Procedure 6

byDrewEinhorn

D. Easy Floppy Disk Alignment Check 6

by Tom Durston

M c e on the KCACR 7

by Doug Jones

Union County Career Center, Update 1977 9

byJamesGupton.Jr.

MITS/Altair CPU Modification 11

byDarreiVanBuer

Demonstration Program 14

byKenKnecht

A BASIC Memory Test 15

by Dave Culbertson

FDOS-III: The Latest from Pertec Computer Corporation 16

Tic Tac Toe Modification 17
by John Trautschold

Practical Programming, Part I! 18

by Gary Runyan

Modifying MITS BASIC for ASCIII/O 20

by John Palmer

MITS Newest Business System .21

Book Review 22

10,000 Visit MiNI/MICRO 77 24

by Marsha Sutton

Introducing the Compact Attach^ Computer 26

Machine Language to BASIC Converter 27
by Richard Ranger

Submitta) Specifications
Articies submitted to Computer Notes must be typed,

doubie-spaced, with the author's name, address, and the

date in the upper ieft corner of each numbered page. Authors

shouid also inciude a brief autobiographical statement about

their job, professionai title, and previous eiectronic and/or

computer experience on a separate sheet of paper. Authors

shouid retain a copy of each articie submitted.

All iiiustrations, diagrams, schematics, and other graphic

materia) shouid be submitted in biack ink on smooth white

paper. Prints and PMTs are acceptabie. No pencil drawings,

uniess property "fixed", and no halftone or wash drawings

can be accepted.

AH artwork should be mailed flat, never foided. Unless

requested, graphics are not returned. Sketches, roughs, and

"idea" drawings are generaily not used.

Photos, charts, programs, and figures shouid be clearly

iabeled and referred to by number within the text of the

manuscript.

Only ciear, glossy, biack and white photos (no Poiaroid

pictures) are acceptabie. Photos shouid be taken with

uniform iighting and sharp focus.

Program iistings should be recorded with the darkest

ribbon possible on biank white paper. A paper tape for each

program submitted must aiso be included.

Computer Notes is changing.

The top news for this issue is to announce the compietion

of the eventfui reiocation of the Computer Notes editoriai

office. The office has been moved from MiTS @ in

Aibuquerque to PERTEC COMPUTER CORPORATiON in

California. And to occupy this newiy located office is a

completely new editoriai staff — mysetf. My name is Marsha

Sutton, and I am the new editor of Computer Notes. The

address of the new office can be found on the inside front

cover.

Severai further changes wit! be forthcoming, of which you

should take note. Computer Notes will continue to sell for

50% a copy, but it wiil be published every other month,

rather than monthiy. Subscriptions wiii now be $2.50 a year

and $5.00 for two years. Those of you who are current

subscribers wiii have your expiration date advanced to

provide you with the number of issues for which you have

paid ($5.00 buys 12 issues).

To establish better channels of communication among the

readers is one of CN s primary functions, and this can be

accomplished by utiiizing the magazine to reiay interesting

and pertinent information. Rest assured i wii! do my utmost

in organizing and compiiing Computer Notes; but to pubiish

a magazine composed of quaiity material property, i need

your input...reguiariy! i encourage and appreciate any and

aii stories, photographs, suggestions, and ietters that you

can offer. Send anything you have to my attention at the new

address; all articles wii) be warmly received. Piease don't

hesitate to contact me on any issue, inctuding problems or

questions — i iove mait, and it's aiways nice to be reminded

that peopte are really out there!

Please adhere to the submittal specifications given on the

inside front cover, as it will make my job much easier. Aiso,

for aii articies submitted in the future, please be sure to

enclose a brief history of yourself each time, even if you have

contributed articles to the magazine in the past.

A new policy has been established regarding payment for

articies for outside contributors. Authors wiil be paid

approximately $35 per page for articies accepted, but this

pay rate is subject to change, depending upon the degree of

technica) content, accuracy, neatness, journaiistic style,

amount of editing required, and the reguiarity with which the

author submits articies to the magazine. Also, equipment or

other unusuai means of payment are no longer negotiabte

items — payments will be made by check only.

That's about aii for "The Latest". Again, i wouid like to

re-emphasize the extent to which i depend upon the

contributions of a)) of you CN readers to produce the

magazine.)t is essentia) that I hear from you with whatever

you may have to say, particulariy with quality articles that

there is a demand to publish. And besides, where eise could

you get the thrill of seeing your name in lights (weil, in print

at least) before the proverbiai pubiic?!

Thanks for your past support, and) hope to be hearing

from you soon.

Marsha Sutton

Editor

P S.) would tike to express my speciai thanks to Tom

Antreasian and Susan Blumentha) for hetping me get my

"bit" together in this — my first issue as Editor of Computer

Notes.

Computer Notes Jan/ Feb 1976 3

System Timing Modification for the

MiTS^Aitair^ 88-DCDD Fioppy Disk
By Tom Durston

MiTS Part #101466 (F1,F4)

MiTS Part #102225 (R5)

MiTS Part #102226 (R12)

MiTS Part #102227 (R11)

MiTS Part #102228 (R6)

To increase diskette interchangeabiiity

from drive to drive and to minimize

disk I/O errors, two time constants on

the 88-DCDD Controiier Board #1 have

been re-evaluated. The effect of this

timing change is to center the data

within the sector. This aiiows a greater

toterance of disk drive misalignment.

A diskette written with the new write

delay shouid be marked " N W D " for

identification purposes. Ail BASiC

and DOS diskettes shipped from

M i T s O after August 31, 1977 are

written with this new write deiay and

are marked "NWD" . These diskettes

are compatibie with unmodified

systems.

To utilize the new write delay, the

Read Ciear Timing must be changed

as indicated later in this articie. if a

system does not require diskette

interchange capabilities and if there

has been no difficulty with disk i/O

errors, the complete modification is

not necessary. However, it is advised

that the write delay be changed as

described in step HA. The modifica-

tion is strongiy recommended for

multipie drive systems or single drive

systems where diskette interchange is

required.

A modification kit (MITS Part

#103678) is avaiiable at no charge to

owners of MITS/AttairTM 88-DCDD

Floppy Disk Systems, if an owner

does not have the facilities for per-

forming the modification, Controiier

Board #1 can be returned for compiete

modification at no charge. However,

R5, the Read Ciear one shot timing

resistor, wilt not be repiaced, but the

correct resistor for R5 wiii be returned

with the board and should be instailed

upon compietion of re-writing or

copying the diskettes, as indicated in

step i)C of the modification procedure.

An important feature of the modifi-

cation includes changing the timing tC

to 74LS221. This was done because

the 74LS221 is more stable and

predictabiethan the 74123. it also

eliminates the need for trimming or

adjusting the timing resistors.

i. PARTS REQUiRED (inciuded in the

FDSK Modification Kit)

2 each 74LS221 iC

1 each 6.65K 1 % resistor

leach 1 2 . 1 K 1 % resistor

1 each 4.32K 1 % resistor

1 each 8.45K 1 % resistor

il. MODiFICATiON PROCEDURE

(Controller Board #1 Only)

A. Change the Write Clear one shot

timing from 280]js to 389)js.

1. Remove R11 and R12.

2. tnstati a4.32K, 1 % resistor in

the R11 position, and a 12.1 K, 1 %

resistor in the R12 position.

3. Remove)C F4, and instaii a

74LS221 in its place.

4. if avaiiabie, use an oscilio-

scope to measure the positive puise

width at TP8 (iC F4, pin 5). This step is

not mandatory, due to the timing

predictability of 74LS221. The puise

width shouid be in the range of 355iJS

to 425ps (389psNOM±10%) when the

drive is enabied and a diskette is

instalied.

B. Copy all diskettes using the pro-

cedure listed in Articie C that foltows.

If the Read Timing is not being

changed, it is not necessary to copy

the diskettes.

C. Change the Read Clear one shot

timing from 140^js to 214ps.

1. Remove R5 and R6.

2. instaii a 6.65K, 1 % resistor in

the R5 position and an 8.45K, 1 %

resistorintheR6 position.

3. Remove iC F1, and instaii a

74LS221 in its piace.

4. if avaiiabie, use an oscilio-

scope to measure the positive puise

width at TP5 (iC F1, pin 13). This step

is not mandatory, due to the timing

predictability of the 74LS221. The

puise width shouid be in the range of

195ps to 230}js (214)js N O M ± 1 0 %)

when the drive is enabled and a

diskette is instaiied.

D. Change schematic notation to

coincide with the modification.

For step 3 in parts A and C, if iCs F1

and F4 are not socketed, remove the

soidered iCs by cutting aii the pins.

Carefuliy remove each pin one by one.

Ciean the hoies by using soider wick

or a soider removing tooi. Do not

remove the piated portion of the hoie.

When soldering the new tCs in piace,

soider each pin on both sides of the

PC board to ensure proper feed-

through connection.

A. Copy/Rewrite
Procedure

By Gaie Schonfetd

The foilowing procedures are recom-

mended for copying disk software

with the new disk Read/Write modifi-

cation using a multiple drive system.

4 Computer Notes Jan/ Feb 1976 4

B. Single Drive BASiC Diskette Rewrite
Procedure

C A U H O N : AH disk software copying

shouid be done AFTER the Write

modification has been made but

BEFORE the Read modification is

made.

METHOD i —Using Disk BASiC "PiP"

Utility Program.

if the user has Disk BASiC, versions

3.3, 3.4, 4.0, or 4.1, use the PiP utiiity

program provided on the system

diskette to copy onto a new diskette.

A PIP program iisting, and instruc-

tions on its use, are included at the

end of this articie.

STEP1: Load Disk BASiC. initiaiize
the system for at ieast two disk
drives (i.e., HiGHEST DtSK NUM-
BER shouid be answered with 1 or
higher).

STEP 2: MOUNT the diskette with

BASiC and PiP on it. Do not

attempt to MOUNT a diskette that

is new and has never had BASiC or

files on it.

STEP 3: LOAD PIP and type RUN.

STEP 4: Use the PiP Copy com-

mand to copy the oid diskette (with

BASIC and the fiies) onto the new

diskette. C O P will take approxi-

mate^ 30 minutes.

STEP 5: Check the new diskette by

re-loading BASiC (from the new

diskette), by MOUNTing, and by

printing a directory of fiies. This

wi i i confirm that everything was

copied satisfactoriiy.

STEP 6: Make the disk Read modifi-

cation.

METHOD it — Using Disk BASiC "PiP"

and DOS.

if the user has Disk BASiC and DOS

(Disk Operating System), Disk BASiC

and PiP can be used to copy the DOS

diskette. Foiiow the procedure de-

scribed in Method I, noting the foitow-

ing exceptions:

STEP 3: LOAD PiP, but UNLOAD

the diskette with BASIC on it

before RUNning PiP. Piace the

DOS diskette in the drive where

BASIC was previousiy iocated. it is

not necessary to MOUNT to copy

with PiP. RUN PiP, and proceed

with STEP 4 of Method i.

STEP 5: Check the new diskette by

ioading DOS, by MOUNTing, and

by issuing a directory command, if

possibie, run severai of the pro-

grams, and proceed with STEP 6 of

Method I.

By Charies W . Vertrees

The foiiowing program iiiustrates how

to copy a diskette onto itseif by

changing the write deiay timing with

which each sector of the diskette is

written. The program is necessary in

order to take advantage of the changes

to the read and write time deiays that

are being made on the MiTS/Aitair

88-DCDD Disk Controiier cards. To-

gether, the program and hardware

changes will alter the physicat posi-

tion within a sector of a diskette from

which the data is written and read.

This program works by buffering an

entire track of data at a time. This is

done by aiiocating the string array A$

with one element for each sector on a

track. The data on a specific track is

then read into this array and verified

by re-reading each sector to ensure

that it was read correctly the first time.

If for some reason the data for a given

sector wiii not verify, the sector will

read into the array again and then

re-read a second time to verify. This

process is repeated untii verification

occurs. Once an entire track has been

read and verified, the data is then

written back onto the same physicai

track of the diskette. To ensure that

the entire operation is done correctiy,

the new written data is then re-read

and compared against the originai

data. Again, if a specific sector wiii

not verify, it is re-written from the

originai data and re-read to verify the

write. This process wiii continue until

aii re-written data on the track is

verified.

The program shouid work without

encountering many REREAD or RE-

WRiTE errors if the disk drive is in

correct operating condition and if

there is nothing wrong with the

diskette, if a large number of these

errors are encountered, this usuaiiy

indicates that there is something

physicaiiy wrong with the drive (atign-

ment, transport, etc.) or with the

diskette.

To use this program, first make the

modifications to the write time delay

circuit on the controiier boards. Then

bring up BASIC and enter this pro-

gram, which can be saved on the

diskette. The program must now be

run on aii diskettes on which pro-

grams or data that may be needed for

future reference currentiy exist. Next,

make the modifications to the read

time delay circuitry on the controiier

boards. This entire procedure shouid

greatiy reduce the frequency of disk

i/O errors due to drive aiignment

problems.

NOTE: This program takes about 30

minutes to run. it can run faster by

increasing the amount of string space

cieared in tine 100. Currentiy, 4658

(137*34) bytes, the minimum amount

required, are cleared. This shouid be

changed to clear as much string space

as memory wiit attow after ioading the

program. Make sure the diskette is up

to speed before RUN is typed.

too CLEAR 137 *34

110 PRINT :PRINT "D ISK SELF COPY"
120 ' GET TO TRACK ZERO

130 OUTB.0
140 IF (INP (S)AND 64) O 0 THEN WAITB, 2 . 2 : 0 U T 9 . 2 :G0TC140

150 ' DO IT FOR ALL 77 TRACKS

160 F0RT=0T076

170 PRINT:PRINT"READ T " ; T

1 8 0 D I M A $ < 3 1)
170 FOR S=0 TO 31 ' READ & COMPARE ALL SECTORS
2 0 0 A * (S) = D S K I 3 < S)
2 1 0 B $ = D S K I * (S)

2 2 0 IF B$ O A $ (S) THEN PRINT"REREAD T " < T i " S " < S : G O T O 200
2 3 0 NEXT S
240 PRINT .PRINT"WRITE T " ; T

2 5 0 FOR S=0 TO 31 ' W R I T E NEW TRACK

2 6 0 D S K O $ A * (S) . S

2 7 0 NEXT S
2 8 0 FOR S=0 TO 31 ' CHECK NEW DATA
2 9 0 B$=DSKI*<S)

300 IF A $ (S) O B * THEN PHINT"REWRITE T " i T i " S " ; S : D S K O * A $ (S) . S : GOTO 290
3 1 0 NEXT S

3 2 0 ' SOTO NEW TRACK

3 3 0 ERASE A$
3 4 0 IF T=76 THEN 360

3 5 0 WAIT 8 . 2 . 2. OUT 9, 1

3 6 0 NEXT T

3 7 0 CLEAR 200
3B0 PRINT:PRINT"THAT SHOULD DO IT "
3 9 0 END

Computer Notes Jan/ Feb 1976 5

C. Sing!e Drive DOS Diskette Rewrite
Procedure

By Drew Einhorn

A program which runs under DOS

using only a singie fioppy disk drive

allows an update of the Write Timing

of the diskettes. This is now avaiiabie

free of charge to those who have

purchased a copy of DOS prior to

December 1,1977. Send a copy of the

invoice or a proof of purchase of DOS

to MITS, and request the DOS Rewrite

Diskette.

In order to update the Write Timing

on the diskettes, perform the follow-

ing procedure. This procedureassumes

oniy one disk drive is avaiiabie.

STEP1: Perform the modifications

to the Write circuits of the Disk

Controiier (reference to stop num-

ber ilA or hardware modification).

STEP 2: Put the oid DOS diskette in

Drive 0. Bootstrap, and perform

initialization as usual. Do not MNT

it.

STEP 3: Remove the old DOS disk-

ette from Drive 0.

STEP 4: Piace the diskette contain-

ing Write Time Deiay update

program in Drive 0.

STEP 5: issue the command MNT 0.

STEP 6: Run the Write Time Deiay

program by typing TiMiNG in re-

sponse to the "." PROMPT, if there

is more than one drive and if the

diskette is in a drive other than 0,

the command is RUN TiMiNG n,

where n is the drive number.

STEP 7: The program wiii type out

CHANGE WRiTE TiME DELAY

ENTER DEViCE NBR. Type 0, and

do not hit RETURN.

STEP 8: Remove the diskette from

drive 0, and place the diskette to be

re-written in drive 0.

STEP 9: Hit RETURN. The program

will begin executing. It wiil first

DSM the diskette and then go

around a loop 77 times, once for

each track into memory. The entire

track wiii then be compared with

the contents of memory with the

diskette. Any sector which does

not compare wiii be re-read and re-

compared, untii they match. The

entire track wiii be re-written with

the new Write Time Deiays and wiii

then be compared with memory.

Any sector that does not compare

wiii be re-written and re-compared.

When this process is completed,

the program wiil go to the next

track. When the last track is

finished, the diskette is MNTed. it

takes approximately 3 minutes.

STEP 10: if there is more than one

diskette to update, perform a

DSM 0 command, and go to step 4.

STEP 11: Perform the modifications

to the Read Circuits of the Disk

Controller.

D. Easy Fioppy Disk
Aiignment Check

By Tom Durston

The following procedure simplifies the

index sensor aiignment check on the

floppy disk drives by using signals

obtained on Controller Board #1. This

eliminates the need for disassembling

the drive chassis. The procedure is

based on using Read Ciear (TP-5) as a

reference signal and on observing

Seriai Read Data going into iC G1,

pin 1 or 2.

This method aiiows an easy check

of the relative sector alignment be-

tween data written on the diskette and

the drive alignment, if necessary, this

method may be used to misalign the

drive to match the misaiignment on

the diskette, ailowing reading of data.

Note that this procedure oniy shows

index sensor and Stepper skew aiign-

ment and does not show Track Offset

aiignment (Cats' Eye Pattern). For a

full drive aiignment check and adjust-

ment, the procedure iisted in the

88-DCDD manuai shouid be used.

Only the index sensor shouid be

adjusted using the procedures iisted

here.

Shown here are two procedures for

checking drive or diskette aiignment.

For easy controi of the head position,

the Disk Exercisor Program listed on

page 118 of the 88-DCDD manual is

recommended. A dual trace osciiio-

scope is required for these tests.

1. iNDEX SENSOR ALiGNMENT

CHECK

a. Connect scope channei 1 probe to

TP-5 (F1-13) Read Ciear. Sensi-

tivity =2v/Div.

b. Connect scope channel 2 Probe to

iC G1, pin 1 or 2; Serial Read

Data. Sensitivity = 2v/Div.

c. Set sync to channei 1, positive

edge trigger.

d. Display channei 2 only.

e. Set time base to 50ps or 20)js per

Div.

f. Run Exercisor program, insert

alignment diskette, and seek

tracks with index BURST.

Observe the 40ps low puise repre-

senting the index BURST. This low

pulse is typicaiiy 4)js slower than the

actual Index BURST seen at the Read

ampiifier in the drive. If the iow pulse

is not seen, the drive is probabiy

severely misaligned. Consuit the 88-

DCDD manual for drive aiignment

instructions, beginning on page 116.

2. RELATIVE ALiGNMENT CHECK

This procedure may be used to

check alignment between a drive and a

diskette with data on it. if a diskette is

giving i/O errors due to drive mis-

alignment when it was written, the

probiem can be eliminated by tempo-

rarily misaligning the drive to position

the data correctiy.

a. Connect scope channei 1 Probe to

TP-5 (F1-13), Read Clear. Sensi-

tivity =2v/div.

b. Connect scope channel 2 Probe to

i C G 1 , pin1 or 2, Seriai Read

Data. Sensitivity =2v/div.

c. Set sync to channel 1, positive

edge trigger.

d. Dispiaybothchanneis.

e. Settimebaseto50jus/Div.

f. Run Exercisor program, insert

diskette to be checked, and seek 0

and 76.

Channei 1 should show the Read

Clear pulse (140ius old, 214ius new),

which indicates the length of time the

Read circuit is turned off. When Read

Ciear is iow, it aiiows the Read circuit

to start searching for the Sync Bit, the

first logic 1 in the data field.

Channei 2 shouid show the Seriai

Read Data. Normaiiy, it consists of

severai logic 1 puises 50 to 100^s after

the beginning of the Sector. The data

6 Computer Notes Jan/ Feb 1976 6

More on the KCACR
By Doug Jones

field starts with the Sync Bit 250 to

350jus (oid timing) or 350 to 500jus

(new timing) after the beginning of the

sector. The logic 1 puises after the

beginning of the sector are caused by

the noise written by the Write circuit

being turned on when that sector was

written. There should be a long period

(250-400[us) of aii logic 0 from the

noise pulses to the Sync Bit.

For optimum timing, Read Ciear

should go low halfway between the

noise puises and the Sync Bit. The

Read Circuit wiil generate errors if the

noise puises occur after Read Ciear

goes low or if the Sync Bit and Data

occur before Read Clear goes iow.

if necessary, the index Sensor may

be temporarily adjusted to aliow

proper reading of a diskette by

centering the Iow time of Seriai Read

Data as described earlier. Note the

originai position of the Data, so the

index Sensor may be returned to

normal. Check both inner and outer

tracks of the diskette in order to

compensate for skew in the data.

Program on page 27

About the Authors

7*om Durston /s f/?e M/7S Eng/neer/ng

Program D/recfor and /s /nvo/ved pr/mar;7y

w/ff? per/pf!era/ /n^erface des/gn. A M/7S

emp/oyee for f/ve years, Durston sfud/'ed

E/ecfr;ca/ Eng/neer/ng af f/!e Un/Vers/fy of

V/rg/n/a and f/ie Un/vers/fy of New Mex/co.

Ga/e Scfionfe/d /?as Peer? emp/oyed Py M<TS

for two years and /s ffie Software User

Spec/a//sf. Sf?e /s currenf/y pursu/ng a

8acfie/or of Science degree af the Un/vers/fy

of New Mex/co /n E/ecfr/ca/ Eng/neer/ng/

Computer Sc/ence.

Cf?uc/r Verfrees /s t/?e D/recfor of Software for

M/7S. He /?as a B.S. /n E/ecfr/ca/ Eng/-

neer/ng from f/?e Un/yers/ty of New Mex/co

and /s currenf/y study/ng for a Masters /n

Computer Sc/ence.

Drew E/nf)orn fio/ds a degree /n Maf/?emaf/cs

from f/?e L/n/vers/fy of OMaPoma. He /?as Peen

emp/oyed Py M/7*S for two years as a

scfenf/f/c programmer.

Theannouncement of the new MITS@

KCACR board (Kansas City Audio

Cassette Recording) for their MiTS/

Attain microprocessor was indeed a

welcome reiief for me and for a stiii

aiiing papertape reader. With the

instaiiation of this singie board, a

worid full of hoies and spilled chad

has turned into neat littie piastic

boxes each with a cassette tape. The

chaos of rattie-rattle-checksum error

has turned into absolute quiet, broken

only occasionally by an eject-click.

Regarding the hardware, the board

occupies one slot of the 680 expander

board. Its features inciude C M O S

logic for iow power consumption, and

It uses tota! digital logic without a

single potentiometer or adjustment.

The input/output is at 300 baud,

allowing a speed toieranceof 2 0 % .

The software that is suppiied with

the KCACR is, likewise, quite good.

MiTS' CSAVE BASiC is suppiied on an

audio cassette tape and its features

still amaze me. A bootstrap ioader

PROM chip that fits into one of the

PROM sockets on the main board is

aiso supplied. Since this chip has no

name, i wiii refer to it as the KCACR

MONiTOR. A iarge portion of this

article wiil concentrate on this chip.

Since there are many things to

discuss about the KCACR and related

software, I have organized this article

into four sections, all intending to

help you gain the most from the

hardware and software of the KCACR.

This writing wiii appear at times to

be a coiiage of software tidbits that

have appeared over the last year in

Computer Notes, i would like to

give credit where it is due. My thanks

to Mark Chamberiin (! literally stole

his PUNBAS routine) and to Ron

Scales for his help on a rather sticky

interrupt probiem.

i. inverse Assembiy of the KCACR

MONiTOR

After putting this new PROM chip

on my 680 processor board, it was

nice to see its two primary functions

work well. A (J)ump to FD00 wiii aiiow

a load of a Motoroia-formatted audio

cassette tape through the new port,

and a (J)ump to FD74 wiii aiiow a

properly-formatted dump of any se-

lected portion of memory. And it reaiiy

works quite weii.

But curiosity started to get the

better of me. Exactiy how does it

work, I asked myself. Are there any

usefui subroutines in it that can be

calied by other programs? Are there

any provisions for turning off the

motor on a checksum error? ! wanted

to know the answers to these and

other questions.

I ran a 680 inverse Assembly

("inverse Assembler Makes Machine

Language Programs Understandable",

by Doug Jones; Computer Notes,

July 1977) on it and produced the

listing that is shown. The comment,

labels, and a bit of doctoring-up was

done using the EDITOR.

I received answers to my initiai three

questions and they were "well", "yes",

and "no", it may not turn off the

tapedeck motor on a checksum error,

but there are some useful routines in it

that are easiiy called from an assem-

bly language program, if you spend a

few minutes and study the KCACR

MONiTOR program, perhaps you wiii

spot some usefui subroutines or iearn

a new programming technique, such

as the foiiowing question iliustrates

about the KCACR MONiTOR. The

problem is, "if BADDR (address

$FD59) is a subroutine that required a

JSR to enter, how do you exit?"

ii. Comparing the KCACR MONiTOR

to the 680 MONiTOR

Tabie 1 compares the addresses of

the major subroutines of both MON-

iTOR programs, and, interestingiy

enough, both sets of subroutines

function identicaily except that they

address different ports. For example,

you wish to send a letter to the

teletype port

C6XX LDAB#'(ietter)

BDFF81 JSROUTCH

;680 PROM MONiTOR address.

On the other hand, you wish to send

aietterto the KCACR

C6XX LDAB#'(ietter)

BDFDF5 JSROUTCH

;KCACR MONiTOR address.

The 680 PROM MONiTOR manual

wiii give you register usage on aii of

the other subroutines mentioned in

Table 1. Beware, for there are some

hidden "GOTCHAs" , at least they

always seem to get me. A caii to iNCH

does not return an 8-bit character;

parity has been stripped off of it...will

i ever learn?

Computer Notes Jan/ Feb 1976 7

)ii. Preparing Your Other Software for

Use with the KCACR

You may wonder why there is a need

for converting your originai BASIC or

EDiTOR to KCACR. CSAVE BASiC is

good; as a matter of fact,) use it

99 percent of the time. But, naturally,

my favorite demonstration program

needs the extra few hundred bytes that

the original BASIC has in usabie

memory. Also, since t am generaiiy

trying to emerge from the papertape

world, the EDiTOR and the EDiTOR/

ASSEMBLY are naturais to convert to

KCACR format.

The PUNBAS ("680 Software News",

by Mark Chamberiin; Computer Notes,

November 1976) program was easiiy

converted to a PUNKCR program for

these purposes. Let me warn you of

several sticky areas.

BASiC

V1.0R3.2 9/25/76

Load in the PUNKCR program.

Load BASIC, but do not initialize.

Make patches to BASIC'S C O N T

statement (see "680 Software

News" article).

Dump BASiC to cassette by doing a

(J) 4000.

Later Revsions

Check last load line of BASIC tape

for address of iast byte.

Load PUNKCR program.

Load BASiC, but do not initialize.

Adjust LDX statement at $4000 for

last byte address.

Dump BASIC to cassette by doing a

(J) 4000.

EDiTOR

R1.0 9/30/76

Load PUNKCR program.

Load EDiTOR program, but do not

initiaiize.

Dump EDiTOR to cassette by doing

a (J) 4005.

EDiTOR/ASSEMBLER

R1.0 9/30/76

Load PUNKCR program.

Load EDiTOR/ASSEMBLER, but

do not initiaiize.

Make patch correction ("Software

Tidbits", by Mark Chamberiin;

Computer Notes, April 1977) to

EOR statement by depositing an

$88 at address $03A7.

Dump EDiTOR/ASSEMBLER to

cassette by doing a (J) 400A.

I suggest using fifteen-minute per

side tapes. I aiso suggest foiiowing

MiTS' advice to dump the same thing

to both sides of the tape to save

rewind wear and tear. These are your

big programs, so you wiil need to buy

three tapes.

680 KCACR

ROUTtNE MONiTOR MONiTOR

BADDR FF62 FD59

BYTE FF53 FD4B

iNCH FF00 FD62

iNHEX FF0F FD36

OUT2H FF6D FDE3

OUTCH FF81 FDF5

POLCAT FF24 -no equivalent-

7aP/e 7. SuProuf/ne Address Compar/son

iV. Techniques of Using Other Soft-

ware with the KCACR

Table 2 shows a cross-reference of

tNCH and OUTCH subroutine catts

and their respective addresses in both

MONiTOR programs. For exampie,

you have finished a iong session with

the EDiTOR, and you wish to store

your buffer on cassette for future use.

Exit EDiTOR with X$$

Setnuiis . M 0 0 C E 0 0 1 0

Adjust OUTCH call . M 0 1 E E F F F D

.N01EF81 F5

Return EDiTOR .J010A

Afterthis point, you wiii not be abie

to see echo, since it is being sent to

the KCACR port.

To dump, type FFEF$$

At some iater date, you may wish to

reioad this tape into, for exampie, the

EDiTOR/ASSEMBLER.

Initialize E /A by

doing .J0107

Exit the EDiTOR

with X$$

Adjust tNCH cait . M 0 1 8 4 F F F D

.N 0185 00 62

Jumpdirectiyto

APPENDfunction .J19FF.

Your toad is completed when the

terminai begins to rattie in response to

some impulses on the KCACR. Next,

hit the computer RESET, and readjust

the tNCH call M 0 1 8 4 F D F F

.N0185 62 00

Return to EDiTOR .J 01 OA

Using the fuii editing features,

check the first and the iast few iines of

your buffer, it is iikeiy that the first

line wiii be FFEF$$, which can easiiy

be killed.

Tabie 2 aiso shows the PEEK and

POKE cross-references for the same

subroutine calls. For exampie, if you

are in BASiC and if you wish to send

some of your PRiNT statements to the

KCACR, do a POKE 2222,253: POKE

2223,245. To return the print to the

tetetype port, do a POKE 2222,255:

POKE 2223,129.

Be alerted that the POKE/PEEK

addresses shown here are for the

subroutine addresses; the JSR com-

mand ($BD) is found one address prior

to those. For example, if you wanted

to NOP the OUTCH cat) out of CSAVE

BASiC, you would have to N O P three

consecutive addresses beginning at

$08BB.

The technique in BASiC of aiter-

natety writing to the tetetype, the

KCACR, or NOPing the OUTCH cait

(writing to the bit bucket) might prove

a useful technique for debugging a

program.

tn summary, many ideas have been

presented in this article, some of

which are good and some you may

consider not so good. I hope you wiii

be able to improve on both. But, no

doubt about it, MiTS has a good

product with the KCACR board.

Program on page 29

BASIC CSAVE BASiC

iNCH $0420 P1056 $042E P1070

OUTCH $08AE P2222 $08BC P2236

POLCAT $061C P1564 $0627 P1575

iNCH

OUTCH

APPEND

EDiTOR

$0169

$01 EE

.J 0689

EDITOR/ASSEMBLER

$0184

$022E

J 19FF

680 MONITOR

iNCH $FFOO P255,000

OUTCH $FF81 P255,129

POLCAT $FF24 P255,036

KCACR MONiTOR

$FD62 P253.098

$FDF5 P253,245

—no equivalent--

7a&/e 2. /NC/V and OU7CH Cross Reference

8 Computer Notes Jan/ Feb 1976 8

Union County Career Center, Update 1977
By James Gupton, Jr.

During 1977, Computer Notes car-

ried two articies dealing with the

high schooi students in Union County,

North Caroiina and their experiences

in the construction of a MiTsO/

Altaic 680B microprocessor com-

puter. To the MiTS/Altair computer

owner who receives Computer Notes,

there must be some questions as

to why high school students shouid

receive such prominence. The answer

is simple. The Union County Career

Center is the first vocationai education

center in North Carolina to offer an

aduit levei curriculum with computer

construction and programming. Most

educational institutions that include

computer operation in their programs

have reiied on "breadboarded" com-

puter circuits of iimited program

capabilities, whereas the MiTS/Aitair

system was far better suited for the

tone of the Union County Career

Center's Eiectronics program. This

articie wiil center on the student

assembiy of the 680B-BSM 16K RAM

circuit board for adapting the 680B to

BASiC language programming.

There are no words to expiain the

feeiing of apprehension when en-

trusting aimost $700 in circuit compo-

nents to the semi-skiiied hands of

high school students, it is simiiar to

the feeling a father has the first time

his son asks for the family car! As a

teacher of electronics, I try to deveiop

manual skiiis in my students by

having them solder printed circuit

boards, and these young aduits usu-

aily prove themseives to be quite

capabie, if only given the chance. So i

entrusted my students with the as-

sembiy of the 880-BSM memory

expansion circuit board.

The students needed to have the

proper toois for such deiicate sober-

ing tasks. Panavice, Inc., by way of

Bert McCabe, their Executive Vice-

President, generously donated the

original "Panavice" with the Model 315

circuit board hoider. This provided an

ideai method of holding the iarge

circuit board of the 680-BSM memory

circuit. The Ungar Princess soidering

iron with agoid-piated micro-precision

solder tip proved to be weii worth-

white in soldering the infinite number

of integrated circuit socket pins of the

RAM circuits. Even so, a magnifying

glass was diiigentiy used to examine

each)C socket for solder bridges and

cold soider joints.

Upon the completion of the assem-

biy of the 680-BSM circuit board, the

students and i discovered a fault that

seems universat in the MPU computer

field. The engineers that write the

assembly manuais assume that the

assembler of the product possesses a

certain ievei of knowiedge in computer

technoiogy. Let me iiiustrate with the

680-B i/O port. The 680-B assembly

manual provides the assembier with a

variety of i/O port choices but offers

nothing to aid in the seiection of the

proper i/O port. The 680-B assembiy

manual states connector finger-test

points but does nothing to identify

which side or what end is considered a

starting point for pin counting.

As we at Union County Career

Center soon discovered, the 680-B

MPU computer alone is worthiess,

unless one memorizes the entire ASCii

binary code. Programming instruc-

tions require alphanumerical designa-

tions that cannot be made without an

appropriate keyboard, so we procured

an inexpensive Radio Shack keyboard

and associated components, only to

learn that we must have a paraiie!

interface to use it. We stipuiated a

cassette BASiC program in hopes that

there would be no need for an

additional interface. But, to our dis-

may, in order to use the cassette

program, we discovered that our 680-B

must aiso have the 680-B KCACR

interface. Shouid we wish to use the

Assembiy ianguage and editor or the

Editor programs included with the

680-BSM, we must then purchase a

tape reader and a parallel interface

circuit board. If not, these programs

wii! be useiess to our 680-B system.

Presently, our 680-B computer just

sits there, doing absolutely nothing!

The important point is that we have

learned, the hard way, what is invoived

in getting into microprocessor-based

computer programming. This has

been a valuable iesson for both

student and teacher. We have learned

that more is required than the basic

computer unit to run a program. W e

now know that an ASCii keyboard and

its interface, as well as a CRT termina!

or printer, are essential. W e aiso

iearned that the KCACR interface is

needed to record any programs on

tape, and, primarily, we have learned

that there is no substitute for quality

in circuit boards and components, by

having Mike Jones at Computer Stores

Computer Notes Jan/ Feb 1976 9

of the Caroiinas test out the workabii-

!ty of our computer with his periph-

eral in the store. We now know that

the student assembly of the 680-B and

the 680-B-BSM was 100 percent-

well, 99 percent (due to one bent iead

of an iC) perfect!

As the Eiectronics Teacher at Union

County Career Center, i must confess

to eariier doubts of my students'

capabilities. They deserve a great deal

of credit for operating the computer as

weii as they did. We aiso thank Mike

Jones for his presentation to the

NCAEDS (North Carolina Association

Educational Data Systems), in which

the MiTS project at Union County

Career Center was mentioned and

where the Reprints of Computer Notes

on Union County activities were so

well received. This level of micropro-

cessor-based computer activity has

previousiy been directed exciusiveiy to

junior coiieges and technical educa-

tion centers and is most unique at the

high schooi ievei.

There are but two more stops before

we at Union County Career Center can

program our 680-B MPU computer,

and they are the acquisition of a

KCACR interface and a terminal.

These wiii be the subjects of future

articles in Computer Notes. Perhaps

the obstacies we encounter and

overcome wiii serve as guides to the

upcoming generation of home com-

puter novices.

About The Author

James Gupfon /s a free-Zance wr/fer and an

e/ecfron/cs feacPer at tPe Un/on County

Career Center /n Norff? Caro//na.

For Sate
Monroe #326 Beta "Scientist" Pro-

grammabie Calculator with Model

#392 Digitai Tape Unit.

Tape drive is fuliy controliabie by

program, permitting automatic read-in

of program overiays plus program-

mable storage/retrievai of data, it is in

like-new condition, with fuil documen-

tation and fitted Attach^ carrying

case.

Originai cost: $1300.

Asking priOe: $650.

Contact:

Gene Szymanski

693 Rosedale Road

Princeton, N.J. 08540

(609)-924-8856

10

Jeff Benton pos/f/ons D/P sw/fcf? on 680-BSM c/rcu/f board. JoPn Marf/n /nserfs /nfegrafed c/rcu/fs /nto ff?e;'r respecf/'ve sockets.

Computer Notes Jan/ Feb 1976 10

M ! T S ^ A ! t a i r CPU Modification
By Darrei Van Buer

Since its introduction, MITS^has had

various aspects of its computer design

criticized. One of the more severe

problems with the originai design

concerns the circuitry used to gener-

ate the and ciock signais for the

CPU chip. The MiTS/Altair^M design

predated the avaiiabiiity of the 8224,

so a 74123 duai one-shot was used.

Probiems with this circuitry have been

met with a variety of fixes, the most

unusual being to glue an aluminum

foii heat sink to the !C. Parasitic

Engineering Company offers a fix kit

based on a better quaiity one-shot.

Because I was interested in trying the

2.5 MHz and 3 MHz versions of the

8080 microprocessor, i studied the

board and the intel data sheets to

iearn how to substitute an 8224 clock

generator iC on the MiTS board. Whiie

it proved to be a rather compiex

modification, it can be made in an

hour or two, as described here.

The modification involves the re-

moval of all the existing ciock circuitry

and replacing it with the standard Intel

circuit and severai components, to be

certain that the right signals are

available on the bus. The ready

latching circuit, however, was not

used, because this function was

already performed on the board and

woutd have increased the compiexity

of the modification.

;

''^i',

F/gure 7. PC Land Cuff/ng— Top Left Component S/de

Before starting, you shouid care-

fully remove the CPU chip to a piece of

conductive foam to void any static

damage. The first procedure in the

modification is the removal of all

unwanted circuitry from the board.

Since none of these components wiii

be re-used, the main concern is that

n -ff-M -- - - * - —̂-r--: I-I ̂ ^ W W jf^^ rl Y - - ' }

a

, .-3

n

F/gure 2. PC Land Cuff/ng—7op Leff Bac/(S/de

they be removed without damaging

the PC board or the plated holes, if

you have good de-soldering equip-

ment, such as solder suckers and iC

de-soldering toois, use them, if not,

the safest method for removing the

ICs, is to cut aii the leads and then

unsolder each iead separateiy. The

parts to be removed are given iater in

this articie. if sockets were used for

the iCs, they must also be removed.-

Aii of these parts are iocated in the top

left corner of the board, between the

regulator and the CPU socket, and

above the large power bus running

across the middle of the board. Alt but

one of the parts in this area, capacitor

C2 —nearest the regulator, should be

removed. When this step has been

compieted, the board shouid appear

as shown in Figure 1.

The second major step in the

modification is to cut through the PC

foii paths on the board in eieven

piaces. In making these cuts, remove

a smail segment with a sharp knife or

scraper, taking care to avoid damaging

other parts of the board. Table 1

summarizes these cuts. The first six

cuts are also shown in Figure 1, which

illustrates the top ieft area of the

board. The seventh cut is shown in

Figure 3. The four remaining cuts are

shown in Figure 2, which are on the

back of the board near the removed

parts.

Computer Notes Jan/ Feb 1976 11

* '

^ f 1?.
"f* * J 'r,' 't"

CUT 7 JUMPER 1 J U M P E R !

F/gure 3. Mod/f/ca&'ons to 7op R/g/!f of Board

F/gure 4, Components and Jumpers— Top Left

The third major step is the addition

of the five parts iisted in the Parts List.

Tabie 2 summarizes the iocations for

these additions, and Figure 4 shows

the locations of these changes (iC Q'

replaces iC Q In the same orientation).

C101 can be used to trim the crystal

frequency to high accuracy, if tuning

Is not needed, a fixed capacitor in the

same range of values may be substi-

tuted. When mounting the trimmer,

note that several alternate hoies can

be used to allow for size. Many

trimmer designs will require the

soldering of short pieces of wire to the

lugs before mounting to the board.

While not required, the use of a socket

for the 8224 is recommended.

The finai step is the instaiiation of

thirteen jumpers on the board. Ail of

the eight jumpers instailed on the top

of the board run between piated-

through holes. Some of the holes are

those ieft by the remova! of compo-

nents, and the others are extra hoies

on the board for other connections.

The jumpers instailed on the back of

the board have one or both connec-

tions made by wrapping the end of the

wire around the pin of an iC or socket

and then soidering it in place. The

locations of aii jumpers are given in

Table 3, and Figure 3 shows the

location of jumper 1. Figure 4 shows

the positions for the remaining jump-

ers on the top side of the board. Aii

jumpers on the bottom of the board

are shown in Figure 5.

Figure 6 shows the finished conver-

sion. At this point, the CPU chip can

be returned to the board, and the

board can be re-instaiied. Trimming

the crystai frequency with capacitor

C101 is the only adjustment that may

need to be made. This adjustment is

not necessary, as the crystai wiii

generally oscillate within 0.1 % for any

setting. Critical adjustment can be

made with a high grade frequency

counter or by zero-beating with W W V

at 5 MHz or 10 MHz over a shortwave

radio. The 2 MHz frequency wiii vary

by as much as a few hundred Hertz, as

mainframe bus loading and instruc-

tion sequences change.

The amount of noise present on

many iines of the MiTS/Altair bus is

proportional to the length of the bus

that the signai has traveled from its

source, i have graphlcaily witnessed,

with an oscilloscope in my system,

noise becoming unacceptable after 10

inches of signal travei. You can cut aii

noise leveis in half by locating the

CPU card in the center of the occupied

part of the bus, since neither signai

travels as far from source to destina-

tion. My system has been running

reiiably for more than six months with

these modifications.

Figure 7 gives the schematic dia-

gram for the modified clock circuit.

Note that the 18 MHz oscillator output

has been brought out as the CLOCK

signai. in the standard MiTS/Altair

system design, this pin is oniy 2 MHz,

so a siight modification in the con-

version is needed if any cards in your

system require the iatter frequency. To

supply ^2 to this pin, omit jumper J5,

listed in Tabie 3. Alternate jumper J5

beiongs on top of the board from the

hoie for pin 10 of iC P (one end of old

J5) to the other hole for the upper end

of C5 (one end of jumper J6).

XTAL'

12 Computer Notes Jan/ Feb 1976 12

PARTS Li ST

iC Q' - 8224 ciock generator

XTAL' -18 MHz

C101 - 3 to 10pF trimmer

R101-2.2k

D101 -1N914

UNPARTS UST (parts to be removed)

iC N - 7406

]C P - 7404

iC Q - 74123

XTAL-2 MHz

C3-.01

C4-10pF

C5-100pF

C6-20pF

R29 - 470

R30 - 470

R31 - (none)

R32- 470

R33 - 470

R34- (none)

R37-1k

R38 - 330

R39-1k

R40 - 330

R41-13k

R42-6.2k

R43 - 680

A. Traces on top of board in part

removai area

1. Trace from P-14 to upper resistor

array

2. Trace from P14to +5Vbus

3. Trace from Q-5

4. Trace from Q-4 to N-1

5. Trace from Q-11 to Q-16

6. Trace from Q-2 to Q-16

B. Trace elsewhere on top of board

7. The upper of two traces which pass

under SC17, just to the right of

SC17

C. Traces on bottom of board in parts

removal area

8. Trace from A-12 (CPU) where it

passes N-8

9. Trace from Q-13 beiow R43

10. Trace from Q-10 to Q-11

11. Trace from Q-2 to Q-3

NOTES: P-14 denotes pad for pin 14 of

)C P. R43 denotes pads left by removai

of R43. Other references are simiiar.

raP/e 7. PC Land Cuff/ng

About The Author

Darre/ ^an Buer was awarded an M.S. /n

Computer Sc/ence Py /owa State Un/vers/fy /n

7975. He /s currenf/y sfudy/ng /or /?/s Ph.D. af

U C M and /las Peen /nyo/ved /n persona/

compuf/ng s/nce f/ie /nfroducf/on of the M/7S

m/crocompufers.

J9 J13 J10 J11 J12 J13 J12

F/gure 5. Jumpers—Sack of Board

J11 J10

F/gure 6. F/n/sPed Confers/on

Part First Location Second Location

)CQ' Same position and orienta-

tion as IC Q

XTAL' Same position as XTAL

(insulate case from board)

C101 Lower pad of R37 or R38 Lower pad of R39, R40, or C3

D101 Cathode (banded end)

to N-2

Anode to lower pad of R43

R101 N-14 Unmarked pad above and to the

right of N-14, the teft two to the

left of CPU

NOTE: Positions are the same as for Table 1.

7ab/e2. Component/Sdd/f/ons

Computer Notes Jan/ Feb 1976 13

r ^ f — ^

O -

r "

> CK

b CK

I

D -

F/gure 7. Scbemat/c Diagram

Jumper First End

1 Hoie to right of cut 7

nearSC17

2 P-3

3 P-4

4 P-14

5 P-10

6 Top pad of C5

7 Lower pad of C5

8 Top pad of R43

9 P-12

10 Holesiightiy to left

(top view) of SC9

11 Hoie in + 5V bus between

SC8 and SC9

12 N-6

13 N-8

NOTE: Same as Tabie 1.

Second End

Hole above pin 11, IC K (8212)

Top pad of C4

Lower pad of R41

Upper of two hoies located

between SC5 and SC6

N-9

Hole between R101 and CPU

N-1

Top pad of R32

Wrap around pin 12 of CPU

Wrap around pin 5 of tC Q'

Wrap around pin 16 of iC Q'

Wrap around pin 11 of IC Q'

Wrap around pin 10 of iC Q'

fab/e 3. Jumper Loca&'ons

Demonstration
Program

By Ken Knecht

A nice computer system is always fun

to show to computer-less friends.

Unfortunately, most programs are a

bit compiicated for simpie demonstra-

tions. By the time the StarTrek ruies

have been explained, most people

have usuaiiy iost interest or are totaiiy

confused. Therefore, i wrote the

following program, which makes a

rather good demonstration and per-

mits others to run the program

themselves.

Very little detaii about the program

is required, other than to mention that

the "#" following some of the variables

indicates that it is doubie precision, if

your BASiC does not support this

function, omit the "#"s from the

variabies and change iines 165, 230,

260, and 290 to read "NOT OVER 8

DiGiTS" rather than "NOT OVER 16

DiGtTS". Other than this change, the

program shouid run in any BASIC.

The program is very simple, it

consists of a string variable to

remember the user's name, some

simple math problems, counting let-

ters in a string, and the tried and true

"Guess the Number" game. The tatter

seems to be the most popuiar.

in any event, when the program is

finished, you'it have fun answering the

many questions.

Program on page 32

About The Author

Ken Knec/if current// beads b/s own company

ca//ed Kencom Corp. /n /Ar/zona. /n add/t/on to

tb/s, be /ree/ances as an author, computer

programmer, Proadcasf eng/neer, and te/e-

v/s/on system consu/tant.

14 Computer Notes Jan/ Feb 1976 14

A BAStC Memory Test
By Dave Culbertson

Rather than test a newly built mem-

ory board for your computer by

using the supplied memory test

routine written in machine or assem-

bly language, have you often simply

loaded BASiC, loaded a program, and

hoped that it wouid work? Many of us

are guilty of this. However, the

probiem can be solved by using this

simple program that is visual in its

manner of testing your memory. The

program does not run at blinding

speed, but it continuaily dispiays what

is developing, which shouid help

computer users who do not under-

stand machine or assembly language

programming.

This program offers two unique

capabiiities. Firstly, the program does

not stop when it encounters an error.

It simply prints the address and the

error. Secondiy, it is possible to test

an address where no memory exists.

Again, the address and the error wii)

be printed.

i have written this program in MiTS^

4.0 BASIC, but it can be modified for

other BASiC languages. Oniy standard

BASiC commands have been seiected.

One should understand where memory

usage occurs in the computer before

using this program (Tabie 1). it is

assumed that you presentiy have 8K

bytes of memory operationai and that

you have just completed a new 8K byte

board that you wouid iike to test.

First, compiete aii of the manufac-

turers' recommended electrical tests,

if you do not have the equipment, a

iocal school or computer store should

be able to do these tests for you.

Next, use this program to test the

operationai mode of your memory

board.

Since you oniy have 8K Dytes of

operationai memory, you will normally

be strapping the memory board for

address 8192. But, in- this case,

temporarily strap the board to a higher

address, such as 24576. This wouid be

the sixth such 4K byte address assign-

ment. Remember to restrap the board

to the proper address when your test

is compiete. This program will fit

within your 8Kbyte board, along with

the 8K BASiC and the stack, it is

necessary to strap the memory board

to a non-consecutive address, be-

cause the stack will move to the end of

your new memory board if you do not

separate the memory, if this happens,

you will not be able to test this area.

To attempt a test of this type will

disturb the BASiC interpreter, and this

will prevent some, or aii, of the BASIC

commands from performing their nor-

mal functions, if the program crashes

as just described, you will need to

reioad BASiC and reload the program.

Once you have strapped your mem-

ory to address 24576 and are ready to

begin execution, run the program.

You wiil be asked for the starting and

the finishing locations of the area to

test. The computer wiii then ask for

the complete or partiat test, i suggest

that you run the partial test first, since

this runs faster. However, it oniy

checks to see if one number can be

written into each location. Try enter-

ing the test word #0 (zero), if aii is

well, the computer will print out the

address and the contents of this

address. If there is an error, the

program will print the address, the

test word #, the resuiting #, and the

word "ERROR". The original contents

of this address will be restored to this

location.

The test wiil continue in this manner

until compiete. ! use a teletype to

retain a hard copy record of the errors.

The good locations are printed on my

video terminal to save paper, if you do

not have two terminals, change line

#150 to read "150 REM" and change

line #170 to read "170 REM". These

changes will print all data on one

terminal, it is necessary to use the

partial test with the test word #0 (zero)

to determine if the new board will

accept aii iow inputs to be written into

each iocation.

Next, rerun the test using the partiat

mode and test word #255. This is the

reverse condition that tests for at) high

input (aii 1's) to be written into

memory, if you have an error and want

a compiete analysis, run the pro-

gram using the complete mode. The

program wit) try to write all combina-

tions (0 to 255) into each memory

location. The compiete routine takes

about four seconds per iocation.

Errors are shown as they are in the

partial test, except the address will

only be printed once if an error is

found. The bad combinations of the

iocation will be printed with the

resulting word #. The compiete anaty-

sis may appear confusing initialty, but

you should be able to analyze the area

of troubte by comparing your resuit

with the knowledge of your memory

board.

Many types of memory boards are

available, so the resuits of this test

may vary. It is important to know the

organization of the memory chips in

your new memory board. Some boards

use an organization of 1,000 times 1,

which means that the chip has 1,000

locations (addresses) that can store a

"0" (tow) or a "1" (high) in each of

these locations. This type of board

witi require 32 memory chips in order

to provide8K bytes of storage. This is

a popular method presently used on

static memory boards.

The dynamic memory boards now

use fewer chips, since more iocations

have been put into each chip. If you

have a 4K byte dynamic board, you

will find only eight chips. The popular

organization among this type of chip

is 4,096 times 1. The memory boards

store the information into the chips by

assigning a vaiue to each of the eight

chips per address that are used. When

an address is selected and you would

like to read the information at that

location, the output is from these

eight chips, if one or more of these

chips is defective or if a iocation

within any of the chips is bad, an error

witt be printed at this address when

this program is run. The value of each

of the eight chips is shown in Table 2.

Assume that the storage of informa-

tion within each chip has something

(1 or high) or nothing (0 or low) as its

only variations, if the chip has

something (1 or high), add its vaiue

(Tabte 2) to the other chips with some-

thing (1 or high) in them. Thus, when

an address is read, you are really

seeing the combined output of eight

chips, if one of these chips having a

large organization is defective, many

addresses will be affected. For exam-

ple, if zeros (0) are stored into chips 0

through 6 and if ones (1) are stored

into chip #7, use oniy the chip #7 value

as the contents of this memory

iocation. The print-out would be 128.

If zero (0) is stored into chips 1,3,4,5,

and 7 and if one (1) is stored into chips

0,2, and 6, use oniy the vatues of chips

#0-1, #2 = 4, and #6 = 64. Add these

values (1 + 4 + 64 = 69). The number 69

has been stored at this iocation. This

is the method used to store numbers

in memory of an eight-chip memory

Computer Notes Jan/ Feb 1976 15

Address Description

0 to 6457 This area is used for the BASIC

interpreter.
6457 to 7676 This area is used for the "BASIC

M E M O R Y TEST" program.

7677 to 8192 This area is the overhead and stack

area.

This table assumes a M!TS/Altair"^

computer with 8K consecutive

memory.

Memory Chip #

0

1
2

3

4

5

6
7

Decimai Vatue

1
2
4

8
16
32

64

128

This tabie assumes 8 memory chips

used per bank.

7*ab/e 7. 7ab/e 2.

bank. Using this method, the comput-

er permits any number from 0 to 255 to

be stored. The computer is not ab!e to

use a larger number.

if the program has been run, you are

now ready to analyze the errors

provided for you by the program. It is

assumed that the partia) program was

run and that the "0" (zero) test word

was satisfactory. The error occurred

when the "255" test word was run, so

one or more of the eight chips must be

bad. Assume that the error occurred at

address 24576 and continued until the

program reached address 25576. Also

assume that, in all of these addresses,

the program showed 191 when you

tried to write the test word "255". If

191 is subtracted from 255, the result

is the number 64, the va!ue of chip #6.

It is now known that chip #6 is either

dead or that it is not receiving the

correct voltages or signals from the

board. A complex problem has been

resolved by locating the area of the

trouble. Even if you decide not to

repair the board yourself, the repair

technician's time, trouble, and ex-

pense will be lowered.

Every program has its limitations,

and this program is no exception. !f

your memory board has addressing

difficulties, three probtems may oc-

cur. Firstly, this program may not

detect any error. Secondly, your

BASIC may bomb when you run your

regular program; or, thirdly, random

changes may be detected in your

regular program. This last condition

could also be due to a memory chip

that malfunctions intermittently. This

is the most difficult problem to

find—in which case, happy hunting!

The given program run shows an

actua) problem. In this example, !

removed chip #6 from my memory

board and performed the BASIC

M E M O R Y TEST on it. The board will

not pass the partial test with the word

#0 (zero), but it will pass the partial

test with the word #255. When the

comptete test program is run, it

indicates the number combinations

that cannot be written properly into

the memory. The decimal combina-

tions that read correctly are not

printed out in the complete test. If you

suspect the memory as the cause of a

problem you are having, this type of

program can save a great deal of time

and trouble.

Program on page 33

About The Author
Da ye Cu/6erfson graduated from f/?e Spr/'ng-

%e/d recfin/ca/ /nsMute and <s currency t/]e
V/ce-Pres/denf of Cusfom f/ecfron/cs, /nc. /n

Massac/7useffs.

FDOS-!!!: The Latest from Pertec

Computer Corporation

FDOS-IH, a powerfut new Floppy Disk

Operating System for microcomput-

ers, is one of Pertec Computer

Corporation's newest additions to

their i C O M @ product tine.

FDOS-IH offers the maximum in

flexibility and power with its relo-

catable assembler for Z-80 and 8080

code. All its console communications

are either in decimal or hex, thereby

simplifying program development.

The "BATCH" command attows auto-

matic chain operations, and the

system includes an optional operator

prompt feature for variable input

requirements. Data is stored and

recognized by FDOS-II), and it can use

all available disk storage capacity.

The new FDOS-H) is available for

any iCOM Floppy Disk System operat-

ing on the 8080 or the Z-80. The

FDOS-IH is fully compatible with

programs written under iCOM's

FDOS-H and allows immediate use of

any existing iCOM-compatibte pro-

grams. The single command opera-

tions of FDOS-IH give the user

disk-to-disk program editing and

assembling, disk-to-memory program

loading, disk-to-punch device trans-

fer, reader-to-disk transfer, disk-to-

disk transfer, named files, and many

other features.

FDOS-IH also has relocatable driver

modules that provide easy access to

files, thus maximizing data handling

flexibility. The storage area on each

diskette is available for any number of

files of lengths ranging from a single

sector to an entire diskette. The files

may contain program source data,

program object data, or user-

generated data.

Files are specified by a 1—5

character file name, and any number

of files may be merged to create a new

file. Any file may be renamed or may

be deleted (FDOS repacks the disk-

16 Computer Notes Jan/ Feb 1976 16

ettes automatical at the operator's

option to make the deleted fiie space

available). Aiso, fiies may be tagged

with attributes (i.e., a fiie may be

declared permanent, not aiiowing it to

be inadvertently deleted).

The resident FDOS-iii is conve-

niently contained in a 1K P R O M

located on the plug-in interface card.

The FDOS-iii also contains its own

powerfu) disk-resident assembier and

editor. The microcomputer's monitor

remains intact, thus retaining aii

existing non-FDOS operations.

A typical edit/assembly sequence

requires oniy a few minutes to

accomplish, and a string-oriented text

editor greatiy simpiifies fiie or pro-

gram modification.

"FDOS-iii provides one of the most

powerful and complete deveiopment

packages avaiiabie anywhere," claims

T. E. ("Gene") Smith, Division Vice-

President and General Manager of

PCC's Microsystems Division. "When

used with any of iCOM's family of

Floppy Disk Systems and compatibie

plug-in interfaces, FDOS-iii provides

an easy-to-use, reliable, fast, and

extremely efficient capability for aux-

iliary program and data storage.

"Using the iCOM program develop-

ment package, time is reduced by a

factor of 20 to 100 compared to

cassette or teietype. in sum, FDOS-III,

together with iCOM floppies, brings

new speed, convenience, and capa-

bility to users' deveiopment tasks,"

Smith stated.

Commands avaiiabie with FDOS-III

inciude Copy, Alioc, Batch, Delet,

Pack, Delpk (Delet and Pack functions

in a singie command), Edit, View,

List, Libo, Dump, Load, Merge, Print,

Renam, Run, Link, and Exit.

Also included are two new com-

mands, A S M B and SYSGN . ASMB , in

Z-80 or 8080 code, assembies the

contents of a source fiie and directs

the object output to the destination

fiie. S Y S G N aiiows the user to store

i/O information in sectors on a system

diskette for use by FDOS-iii, thus

minimizing the effort needed to bring

FDOS-iii up on a custom-configured

machine.

FDOS-iii is being marketed as part

of the PCC Microsystems Division's

iCOM Microperipherals@ product line.

It is avaiiabie from any of the more

than 70 iCOM dealerships

nation-wide.

Tic Tac Toe Modification
By John Trautschotd

The "Tic Tac Toe" software articles

from the August 1977 edition of

Computer Notes was very interest-

ing— and frustrating, to say the least!

When i ioaded the BASiC program, i

discovered that, no matter how hard i

tried, I could not beat the computer!

The program was written in such a way

as to make the computer unbeatabie;

the best that could be achieved was a

tie (as was mentioned in the articie).

Even if the program could have been

beaten, there was no logic inciuded

permitting the program to jump to the

"Player Wins" subroutine at iine

number 1220. i have recently made

some modifications to correct this

probiem as well as some that now

make it possible, but stiti difficult, to

win.

i have eliminated the lines that

establish the initial move for the

computer, because these aiways de-

fauited the computer to start in the

center square (which is nearly unbeat-

abie as an initiai move), as well as in

square 1 —3 (upper right square on the

board). To replace these eliminated

lines (190 and 200), i have written a

random number subroutine that ran-

domiy places the computer's first

move in an empty square. After the

first random move, the other moves

follow according to the programmer's

iogic. To repair the problem of having

no logic to determine if the piayer has

won, i have added a complete sub-

routine that Is called in the new line

number 225. Line 1500 is the location

of the subroutine.

The foiiowing is a list of the new

lines to be inserted into the program

for proper operation:

1 90D = iNT(RND(1)*10/3)

191 iF D = O O R D > 3 G O T 0 1 9 0

192 E =)NT(RND(2)*10/3)

193 IF E = O O R E > 3 G O T O 192

194!FC(D,E) = 0 T H E N C(D,E,) = 3:

C$(D,E) = " C " : G 0 T 0 21C

195IFC(D ,E)<>0 THEN 190

225 G O T 0 1 5 0 0

1500!FC(1,1) = 1 A N D C (1 , 2) = 1 ANDC(1 ,3) = 1 G O T 0 1 2 2 0

1510!FC(1,1) = 1 A N D C (2 , 2) = 1 ANDC(3 ,3) = 1 G O T 0 1 2 2 0

1520IFC(1,1) = 1 A N D C (2 , 1) = 1 ANDC(3 ,1) = 1 G O T 0 1 2 2 0

1530IFC(1,2) = 1 A N D C (2 , 2) = 1 ANDC(3 ,2) = 1 G O T 0 1 2 2 0

1540IFC(2,1) = 1 ANDC(2 ,2) = 1 ANDC(2 ,3) = 1 G 0 T 0 1 2 2 C

1550IFC(1,3) = 1 ANDC(2 ,2) = 1 ANDC(3 ,1) = 1 G O T O 1220

1560IFC(1,3) = 1 ANDC(2 ,3) = 1 ANDC(3 ,3) = 1 G O T O 1220

1570IFC(3,1) = 1 ANDC(3 ,2) = 1 ANDC(3 ,3) = 1 G O T O 1220

1580 G O T O 230

This concludes the modifications to

the program, i hope that others will

enjoy this program as i have.

About The Author

John fraufscho/d has worked /or f/ve years /n

fe/ev;'s;on e/ecfron/cs and eng/neer/ng. He

rece/ved h/s eng/neer/ng degree from fhe

Un/vers/fy o/ W/scons/n /n M//wau/ree, and he

en/oys worMng w/fh computers Pofh af home

and on the /op. /f has Peen three years s/nce

he t/rsf acqu/red hf's M/rs/^/fa/r 8800.

Computer Notes Jan/ Feb 1978 17

Practica) Programming, Part)!
By Gary Runyan

rfx's ser/es /s produced by ffie

Compuf/ng Serw'ces Department, and ff;e

arf/c/es confa/n usefu/ /deas for programm/ng

M/7*SB^S/C. "Pracf/ca/Progamm/ng, Part/"

appeared /n tf?e November 7977 /ssue of

Computer Notes, and /f d/scussed ff?e so/uf/on

to f/?e prob/em of/;'ne counf/ng.

CTRL-A, a feature of M)TS@BAS!C,

has become a powerfut programming

aid, due to an undocumented feature

discovered by Donaid Fitchhorn of

M)TS. If CTRL-A is typed immediately

after EDtTing a program line, the

edited line is returned as a command

to be edited. Thus, CTRL-A can be

used to shuffle program lines, break

apart multipte statement tines, and

isolate program errors.

A program tine can be shuffled from

one place in the program to another by

typing the fottowing sequence:

1) EDIT xxxx<CR>(xxxx = otd tine #)

2)Q

3) CTRL-A

4) !yyyy<CR> (yyyy = new line #)

5) xxxx<CR>

This moves the tine that was at xxxx

to line yyyy and deletes line xxxx. The

original tine can be retained by not

executing Step 5. tf a new tine is

needed that is stightly different from

the old line, ESCAPE can be typed in

place of CR (carriage return) as the

last character in Step 4. The editor can

then be used to modify the line before

placing it at yyyy.

CTRL-A can be used to break a

mutti-statement program line into two

program lines without retyping either

of the new lines. A copy of the original

tine is made using the above proce-

dures for copying a line. Then, the K

EDIT command is used to remove the

first half of the line from one copy,

and the H EDIT command is used to

remove the second half of the line

from the other copy. For example, to

change:

600LPRtNTA:PR)NTB

to:

600 LPRtNTA:tFX<0THENGOSUB500

605PRtNTB

one would type:

EDIT600<CR>
Q

CTRL-A

I605<ESC>2KP<CR>

EDIT600<CR>

2SPHtFX<0THEN GOSUB500<CR>

To isolate a syntax error that has

been encountered white a program is

running, type a Q to exit EDITing

without losing the program variabtes.

Typing CTRL-A then restores the

program line for execution as a

command. The command tine can be

modified at will without destroying att

the program variables and then exe-

cuted to test the modifications. Co-

lons can be replaced by single quotes

in a multiple statement line to isolate

the statement with the syntax error.

Obvious errors can be corrected and

tested immediatety. For example, if

the line:

50A = 5:PRtNTA:A = A + #7:PRINTA

is encountered while a program is

running, the following will isolate the

error, correct it, and continue the

program:

SYNTAX ERROR tN 50

OK

50(Type: Q)

OK

(Type: CTRL-A)

! (Type: S:C'<CR>)

OK

! (Type: CTRL-A)

! (Type: S 'C :S :C <CR>)
5

OK

(Type: CTRL-A)

! (Type: S*C:S:C' <CR>)

5

SYNTAX ERROR

OK

(Type: CTRL-A)

I (Type: S#C3S'C: <CR>)

5

42

OK

(Type: GOTO6O)

After the syntax error is success-

fully corrected, one executes a G O T O

command (if the corrected line did not

branch back in) to continue program

execution. Continuing after correcting

is a good habit to adopt. Other bugs

are found without completely rerun-

ning the program. If variable values are

clobbered before an error is success-

fully corrected, the programmer must

decide if it is better to rerun or to

restore values (using direct com-

mands) before continuing with a

GOTO.

CTRL-A can be used to isolate

tLLEGAL FUNCTtON CALL, TYPE

MISMATCH, and other errors, as well

as syntax errors. One simply types:

EDIT [number of line in question]

Q

CNTRL-A

to gain control of the line in question.

Once a programmer begins using

CTRL-A after exit from EDtT, he wilt

find that his whole set toward debug-

ging has changed. Rather than follow-

ing the old batch system approach of

guessing corrections from the listing

and rerunning, one will begin using

the computer to resolve the bugs.

Time tost to and ulcers caused by

debugging will be considerabty re-

duced.

tnitialty, in the joy of a new-found

too), you will use the "don't-leave-the-

terminal-until-the-bug-is-resolved" ap-

proach in excess. Eventually, after

several wild goose chases, you will

begin to discriminate between when to

sit back and reatty study the tisting

and when to poke-around on the

terminal.

Some additional poke-around hints

are:

1. Use CTRL-A to execute tines that

print the values of variables.

2. Tack lines that will print variable

values onto the end of the program

to save constant retyping.

3. Edit extra STOPs into the program

to establish poke around points.

4. Edit in extra PRINT commands to

monitor the evotution of variable

values.

5. UseTRONandTROFF.

6. Edit in GOTOs to skip around

undesired outputting, or go

directly to problem areas.

About The Author

Gary Runyan ;'s f/7e D/'recfor of Compuf/ng

Serv/ces and has been a M/7*S emp/oyee for

ff?ree years. He fias worked /n f/ie dafa

processing f/e/d for s/x years, and f?e ho/ds a

Bacfie/or's degree /n E/ecfr/ca/ Eng/neer/ng

from New Mex/co State Un/vers/fy.

18 Computer Notes Jan/ Feb 1978 18

K N O W
T H E

USER
Balding spot, from scratching head in bewilderment.

Abstracted expression, often obscured by

thick-lensed glasses, a result of endless

debugging.

Does not remove tie after work.

9 pencils, 2 mini-screwdrivers (standard and phillips),

small slide rule, and pocket calculator.

Clothing often reeks of solder.

Ring, to remind one of one's h o m e and

family (n o w and then).

Thin, trembling limbs, indicative of neglect

to eat.

T h e advanced user often seems out of touch with

his surroundings and unable to speak about any

thing other than his o w n system.

If you k n o w a user, or have one in your family,

contact the address below. It may not help . . .

but it couldn't hurt.

P E R T E C C O M P U T E R C O R P O R A T I O N
2 0 6 3 0 Nordhoff St.

Chatsworth, C A 9 1 3 1 1

Piease send me a subscription to Computer Notes.

D $2 .50/year D $ 5 . 0 0 / 2 years ID $10 .00 /year for overseas

State: Zip:

C O M P A N Y / O R G A N I Z A T I O N .

ED Check Enclosed

Computer Notes Jan/ Feb 1978 19

Modifying M!TS^ BASiC for ASCii i/O
By John Paimer

I am a certified electronics technician,

but most of my past experience has

been in radio and teievision. Conse-

quently, my M)TS@/AitairTM ggoo has

been an exciting chaiienge, and my

efforts have been aided by the

information in Computer Notes. Many

of the C N readers' comments indicate

that there are aiways newcomers to

the trade iooking for information on

how to do elementary tasks, such as

making ASCii recordings on cassette,

so permit m e to relate to you a few

pointers that I have teamed. On

On modifying MITS BASiC for

ASCit i /O :

Hardware: 8800 with 16K, A C R , 2S)0,

and Model 33 TTY

Software: MiTS 8K BASiC , Version

4.0, January 1977

I thought i might be the last person

to learn to enter BAStC's i / O and to

change a few memory iocations to

permit an ASCii program iisting

(source code) to be either output or

input on a storage device other than

paper tape (a paper tape punch/reader

tends to be very expensive!).

Several problems that users of MiTS

BASIC might encounter can be solved

by modifying the i /O routines in such

a way that the A C R cassette interface

replaces the terminal, if the user has

Extended BASiC, the consoie feature

will transfer i /O to the cassette.

Questions wiii arise if the program

was written in some version of BAS iC

that does not have the consoie

command.

The foliowing describes how and

why I make ASCii recordings in MiTS

BASIC. A very simple batch to 8 K

BASiC, Version 4.0, wiil piace ASCii

characters onto the cassette when !

use my Mode) 33 tetetype. After

ioading the program, using C L O A D , i

then type:

P O K E 1 3 6 2 , 2 1 1 : P O K E 1 3 6 3 , 7

Upon hitting the return key, BASiC

then pokes these two iocations in the

output routine, and what goes to the

tetetype printer witi go to the A C R .

The MiTS Software Library has more

information on how to do both input

and output using the A C R and 4K

B A S I C (which has no provision for

C S A V E and C L O A D) .

But this simple method is oniy for

8K BAStC, Version 4.0. Before trying

this, be sure you have the same

Version of BASiC. Either the locations

are different, or there are not severai

empty iocations in the output routine.

Note that those two iocations are

needed for the MITS 4P10 board, but

not needed otherwise.

Doing input is slightly more in-

voked, but there are three reasons for

troubting yourself.

1. The output of one program may be

needed as input to another.

2. Cassette input wiil transfer a

program from one version of

BASiC to another. For example, if

you key in StarTrek in 8K BASiC,

you wii) find that you cannot load

it into the current version of

Extended BASiC.

3. Some types of errors due to poor

recording can best be corrected by

making a new recording In ASCii

and then using the new recording

as input. BASiC will put aii lines in

proper order, provided that the

input speed is not too fast (put in

nulls, just to be sure).

To Input an ASCii recording from

the cassette, one must either use the

P O K E command or must stop the

microcomputer and a!ter memory io-

cations with the front panei controis.

i am presenting a partial listing of

the routines that are used in MiTS

8K BASiC, Version 4.0. for terminal

input and output. Note that output is

first.

Split-Octal O C T A L Code or

Address Data Purpose

Here is part of the output:

005 116 361

005 117 323

005 120 021

005 121 365

005 122 000

005 123 000

005 124 361

005 125 311

Next is the input:

005 126 333

005 127 020

005 130 346

005 131 001

005 132 312

005 133 126

005 134 005

005 136 021

005 137 346

The output precedes the input,

because both are 'called' routines that

are cailed from somewhere inside

BASiC. Furthermore, the front panei

will produce the same result as the

P O K E command.

The following commands will trans-

fer input to the MiTS A C R interface

using 8K BASIC, Version 4.0:

P O K E 1367 ,6 :POKE 1370,194:

P O K E 1374,7

Before hitting R E T U R N , begin pay-

back of a recording that was made In

ASCi) mode.

To have BASiC return control to the

keyboard, either use the front panei to

restore the original input routine or

play a tape that was previousiy

prepared. Here is how to prepare the

'change-over' tape.

1. P O K E the two empty iocations in

8K, Version 4.0, as shown earlier in

the articie.

2. Type: N U L L S

3. Put a spare tape into the cassette

and begin recording (aiiow 15 sec-

onds for the leader).

4. Hit R E T U R N two orthree times.

5. Type: P O K E 1367,16:

P O K E 1 3 7 0 , 2 0 2 : P O K E 1374,17

6. Hit R E T U R N severai times.

if a typing mistake is made, you

must begin again.

The cassette will now have the

instructions needed to restore control

Changes Needed for

A C R Cassette interface

P O P P S W

O U T

Data Port

Push P S W

N O P 323

N O P 007

Pop P S W

Return

In

Status Port 006

ANI

M A S K BiT

JZ 302 J N Z

S T A R T i N G

A D D R E S S

D A T A P O R T 007

ANi

20 Computer Notes Jan/ Feb 1976 20

to your keyboard (this is for a

keyboard that uses the MtTS 2S!0 t/O

interface). Set aside your 'change-

over' tape.

When recording, it is good practice

to use at least three nulls to prevent

the tape from advancing ahead of

BASIC (when playing a tape, use

NULLO).

If you wish to merge two programs,

be sure that the two programs have

different line numbers. First, input the

program with tower line numbers.

Otherwise, BASIC must do too much

housekeeping, and it will fall behind.

MITS BASIC presently has no provi-

sion for merging files or programs

using CSAVE and CLOAD, and the use

of CSAVE and CLOAD is much faster

than ASOt.

When using a poor quatity tape, a

line number may become garbled.

When loaded Into 8K BAStC, such a

recording may cause trouble. The

following illustrates this:

LtST

10 REM

970 A = A + 4

980 tF A 12 THEN 450

999 END

57 &NH S J % F O R B V M)D$ =

57 &NH S J % F O R B V MtD$ =

57 &NH S J % F O R B V MtD$ =

Where is tine 57 from? Why is it at

the end of the program? And why does

it repeat on and on and on ?

Any attempt to erase line 57 will

prove to be futile. Aside from peeking

inside the program buffer and trying to

erase the bad number, the only way to

cure this program is to dump it as an

ASCtt tisting.

To make an ASCII recording of an

existing program, do the following:

1. POKE locations 1362 and 1363 with

211 and 7.

2. NULL 3.

3. Type the following (don't hit

RETURN yet):

PRtNT:PRINT:PRtNT:L)ST

4. Start the recorder, type a few

spaces, and hit RETURN.

White BAStC is listing the program

on the printer, the same ASCtt

characters are being recorded on

cassette. A standard tetetype runs at

110 baud, yet the ACR interface is

normally 300 baud, which presents no

real probtem. The cassette witl have

some verrry loooong stop bits, but it

will ptaybackadequatety.

Be sure to leave a long leader at the

start and the end to prevent 'garbage'

from being fed into your computer's

input routine. The spaces and nults at

the beginning will purge the ACR

buffer. First, play the tape, and, when

the spaces begin, start your computer

input, tf you have not already done so,

it is advised to modify the cassette

machine to hear the ptayback while

the patch cord is in place. Try 47 ohms

across the mini-jack contacts.

Forthe more experienced, all of this

may be very elementary. But, for those

users tike myself, I hope t have been of

some help, tncidentally, " N E W " may

be used when you don't want to merge

programs.

About The Author

Pafr/'c/c De/aney /s currency worMng as an

/nsfrucfor of D/g/fa/ E/ecfron/cs af ffte Rfjode

/s/and Schoo/ of E/ecfrom'cs. He gradoafed

from ffie Un;vers/fy of R^ode /s/and <n 7970

w/ff? a B. S. E. E. and /s now deve/op/ng Mor;'a/

programs for ff?e M/7*S/A/fa/r8800 comptvfer.

:A15,DLRO F,E!FM93

:A15,DLRO F,EtFM93

:A15,DLRO F,EtFM93

M!TS" Newest Business System

The MtTS^ 300 Business System is

one of Pertec Computer Corporation's

major additions to their already exten-

sive product tine.

The MITS 300 is a microcomputer-

based system that is complete with att

necessary hardware and software, tt is

available in two configurations, one

with a hard disk (the MtTS 300/55) and

the other using two floppy disks (the

MITS 300/25). The futty integrated

business system provides capabitities

for word processing, inventory con-

trol, and accounting functions, which

include a general ledger, accounts

payable, accounts receivable, and

payroll.

"Customers now can buy a totatly

integrated system from a singte

supplier," says T.E. Smith, Division

Vice-President and Genera! Manager.

"We provide both hardware and soft-

ware and can assume responsibitity

for the entire system. Atso, service

facitities are availabte through the

PCC Service Division. And we are able

to provide extensive dealer support in

installing and starting up each

application."

Both configurations of the MITS

300 Business System incorporate a

MITS/AitairTM 880b turn-key main-

frame with 64K of Dynamic RAM, 1K

of PROM, and serial input/output

interface. Also included is a MITS/

Altair B-100 CRT terminal with a

12-inch, non-glare monitor. The CRT

displays 24 tines with 80 characters

per line and has a memory page of

1920 characters. The MtTS/Altair

C-700 tine printer, which is al^o part of

the basic configuration, is capable of

a bi-directional operation that allows

the printhead horizontal movement for

seeking the nearest margin of the next

line. The C-700 prints 60 characters

per second and 26 tines per minute.

Each configuration, comprised of

the mainframe, a CRT terminal, and a

line printer, atso includes either a hard

disk or two floppy disks, a controlter,

and BAStC language software. A

MtTS/Attair A08 Accounting Package

and an inventory Management Soft-

ware Package, although not inctuded,

are avaitable both with the hard and

the floppy disk systems at additionat

costs.

The MITS 300 Business System is

being marketed as part of PCC's MtTS

product line, tt is availabte at the more

than 40 MITS Computer Centers

across the continent and by way of

PCC's Microsystems Division directty

on an OEM basis.

Computer Notes Jan/ Feb 1978 21

PERfEC C O M P T E R CORPORA T/ON's new M/TS 300 Bus/ness System /s compr/'sed of a

ma/'nframe, a CR7* ferm/na/ on a desk, and a //ne pr/nfer on a pedesfa/. P/cfured here /s fPe

M/TS 300/55, wh/ch /s the Pard d/sk, rafPer than the f/oppy d/sk, system.

Favors
Captain Charles P. Connoily is a new

MITS@ user and wouid iike to ask for

your help. He is interested in contact-

ing anyone using BASiC to solve

substitution cryptograms. He wouid

be particularly interested if MiTS

BASiC is being used, but any BASiC

without MAT statements will do

nicely. Please write to Capt. Connolly

at the foilowing address:

2701 Park Center Drive

Apt. B-501

Alexandria, Va. 22302

Presented Pere /s a review of Dr. C. W////am

Enge/'s recenf/y puP//sPed Pook enf/f/ed

Sf/mu/af<ng S/mu/af/ons. 7*he sma// paperPack

Pook /s written /n M / 7 S @ 8 K BAS/C 3.2 [fPe

programs w/// a/so work w/fh a// h/gher

vers/ons of B-4S/C] and confa/ns fen rather

unusua/ s/mu/af/ons wr/tfen for the en/oymenf

of the computer hoPPy/sf.

Dr. Enge/ /s a Professor of MafPemaf/cs

Educaf/on af the (Jn/vers/fy of South f/or/da /n

Tampa, /f/s Pook se/ts for $5 per copy and $3

each for orders of fen or more. Send orders,

comments, orguesf/ons to;

Dr. C. W////am Enge/

P.O. Sox 76672

Tampa, F/or/da 33687

A Review

of

STIMULATING SIMULATIONS:

Ten Unique Programs in BASiC

The excitement of deep sea fishing,

the intrigue of a jewel robbery, and the

chailenge of piioting a space ship on a

mercy mission are three of ten

simulations you can experience with

your computer. The interaction be-

tween computer and piayer is a

challenging one that forces the piayer

to make iogicai decisions in order to

succeed or, sometimes, survive.

These ten simulations can be found

in a ciearly-written, well-documented,

64-page book cailed Stimuiating Sim-

ulations. Atthough the ideas are fairiy

sophisticated, the programs are reia-

tiveiy short (from 40 to 100 iines of

BASiC). Each program inciudes a

Book Review
scenario, a sample run, a flowchart,

a listing of the variabies, and sug-

gested modifications.

This book is a good starting point

for the computer hobbyist who wishes

to explore the use of the smail

computer in simulating reai events. A

brief description of each program is

given below.

"Art Auction" (48 iines)

One buys and selis paintings to

make a maximum profit. This is a

fast simulation and does not require

extra materiais.

"Monster Chase" (48 iines)

A monster is chasing a victim in a

cage. The victim must etude the

monster for ten moves to survive.

This is a fairiy quick simuiation that

does not require too much thought.

"Lost Treasure" (74 lines)

A map of an isiand that contains

treasure is presented. The adven-

turer traveis over different terrain

with a compass that is not very

accurate in an attempt to find the

treasure. This is a short simulation

that requires about fifteen moves. A

map is provided.

"Gone Fishing" (83 iines)

The object is to catch a iarge num-

ber of fish during a fishing trip. Half

of the catch spoils if the time iimit

is exceeded, or if time is iost in a

storm, in addition, the boat sinks if

it is guided off the map. There are

aiso sea gulls and sharks to avoid. A

chart is needed to keep track of

good fishing spots.

"Space Fiight" (68 lines)

The task is to deiiver medicai

suppiies to a distant pianet while

trying to stay on course without run-

ning out of fuel. Graph paper is re-

quired to plot the course.

"Forest Fire" (77 lines)

The object is to subdue a forest fire

with chemicals and backfires. Be-

cause the output is a9X9 grid, a fast

baud rate to the terminai is desir-

able. The success of a firefighter is

based on the time needed to control

the fire and completely extinguish

it.

"Nauticai Navigation" (70 lines)

This simuiation requires the naviga-

tion of a sailboat to three different

islands, using a radio direction

finder. The wind direction is an

important variabie. Graph paper,

protractor, and ruler are needed to

plot the course.

"Business Management" (92 lines)

in this simuiation, raw materials are

bought, and finished products are

produced and sotd. The cost of

materials and production and the

selling price vary each month. The

objective is to maximize the profits.

No extra materials are required.

"Rare Birds" (75 lines)

This is a bird watching simulation.

The object is to identify as many dif-

erent birds as possibie. A record of

those identified is helpful, and a

bird-watching chart is provided.

"Diamond Thief" (83 iines)

One assumes the roie of a detective

in this simulation. A thief has just

stoien a diamond from a museum.

Five suspects must be questioned

to determine the thief. A fioor pian

of the museum and a chart indicat-

ing suspects and times are provided.

22 Computer Notes Jan/ Feb 1976 22

if you need rea! results from
your 8080 or 6800 based system

Then scan this
!ist of topics . . .
H binary arithmetic

H! logical operations

H organization of a computer

H referencing memory

H carry and overflow

HI multiple precision arithmetic

H) loops

H shifting

H software multiplication and

division

H number scaling

H floating point arithmetic

H stack pointer usage

Ht subroutines

B table and array handling

H number base conversions

H B C D arithmetic

H trigonometry

H random number generation

B programming of the 6820 P!A

B programmed input/output

H control of complex

peripherals

Ht programming with interrupts

M a software time of day clock

H multiple interval timers in

software

H data transmission under

interrupt control

Ht potting

Hi debugging techniques

H patching a binary program

H full source listing of a debug

program . . .

Order n o w . . . Sfarf geff/ng

rea/ resu/fs from your

3030 or 6800 based sysfems.

Every one of these topics and many, many more are discussed

in the P r a c t i c a ! M i c r o c o m p u t e r P r o g r a m m i n g books. !n chapter

after chapter and scores of formal program examples, the basic

skills of assembty language programming are developed step

by step. The examples are real and have been tested and

proven. They run, and more important, they teach. If you're

tired of generalities, reproductions of manufacturers data

sheets and books with examples that don't run, then there is

only one ptace to go, the P r a c t i c a ! M i c r o c o m p u t e r P r o g r a m -
m i n g series from Northern Technology Books. At $21.95 each

they are the best bargain in programming information available

anywhere.

N o r t h e r n T e c h n o i o g y B o o k s Box 62, Evanston, i L 60204

D Practical Microcomputer Programming: The Intel 8080 $21.95

D Practical Microcomputer Programming: The 6800 $21.95

Q check on US bank enclosed D money order enclosed

I l l i n o i s r e s i d e n t s a d d $1 .10 s t a t e s a l e s tax .

F o r e i g n o r d e r s a d d a i r m a i l p o s t a g e if d e s i r e d (.8 kg) .

P l e a s e t y p e o r p r i n t

Name

Company^

Address

City State_
Prepaid orders onty

Zip.

Computer Notes Jan/Feb 1978

10,000 Visit M!N</M!CRO '77
By Marsha Sutton

The 1977 MINI/MICRO trade show

was hetd in Anaheim, California on

December 6—8, and the organizers

say it was quite a success. Tota!

attendance for the show was 9,917,

falling just short of the projected

10,000. The attendance figure includes

300 booth personnel, representing

nearly 180 companies from across the

nation.

The show was open for three tut)

days, during which time guests couid

view the exhibits as wel! as attend the

technical sessions. The 20 sessions

consisted of 90 speakers, and the

program presentations ranged from

formal papers to panel discussions.

Topics included such areas as how to

begin a new company, smati business

systems, microcomputers to help save

energy, and trends in mini-micro

software, small disk memories, CRT

terminals, and printer devetopment.

Organizers of the conference were

pleased with the guests at the show,

claiming many prominent visitors

from Japan, Canada, and several from

Europe. Included among the guests

was LEON RUSSELL, the popular rock

performer. He appeared on the second

day of the show, looking very conspic-

uous in his sunglasses and cowboy

hat. When asked if he intended to

purchase a home computer some day,

he replied that he already owns a small

system (although he would not reveal

the type). He did say that his

applications include bookkeeping and

synthesizing of music. He was not,

however, using his system for compo-

sition, amplification, or production of

sound effects, which are some of the

latest innovative musical applications

for microcomputers.

Pertec Computer Corporation ap-

peared at the show in fu)l force with

two booths, one for the Microsystems

Division and the other representing

the Pertec Division. The Pertec

Division booth displayed magnetic

tape transports and fixed, cartridge,

and flexible disk drives in an attractive

booth design. The Microsystems Divi-

sion (MSD) booth was also an

impressive display of both MITS@ and

iCOM@ Products.

PCC's Microsystems Division pre-

sented several new products at the

Anaheim show, all aimed at enhancing

and supporting the existing product

24

line. One of these products is the

MiTS 300, a microcomputer-based

integrated business system. The MiTS

300 is available in two configurations,

both of which are supplied with

complete hardware and software.

Visitors at the MSD booth were also

introduced to iCOM's A t t a c h ^

microcomputer. The Attach^ is a desk-

top computer that is built around the

8080 MPU. Its basic configuration

includes a CPU board, keyboard, video

board, and turnkey monitor board.

MSD has atso recently introduced

the FDOS-tll, which is iCOM's new

Floppy Disk Operating System for

77ie MSD &oo?/7, w/ff? M/75 Business System acfm/rers on ffte /eff and on/ooAers of f/ie

f;'me-sf]ar/ng 8/1S/C demonsfraf/on

M/N/ /M/CRO /n fu// sw/ng, w/ff? PCC's Perfec D/'w's/on 600M) af ff)e end of ff?e a/s?e

Computer Notes Jan/ Feb 1976 24

1
)

fPe new M/7S Bus/ness System /COM's /atest add/f/on—the attache

microcomputers. Compatible with

FDOS-III is DEBBFM (Disk Extended

BASiC by iCOM), a comprehensive

BASiC ianguage system that is easy to

use and offers expanded capabiiities.

Demonstrations of MiTS' Time-Sharing

BASiC were given regulariy aii three

days, attracting a iarge number of

peopie to the booth. A variety of other

MSD products was aiso on display for

the guests of the show.

The MINi/MiCRO '78' show wiii be

held in Phiiadeiphia on April 18-20,

and 40 percent booth space is already

reserved. The conference organizers

are anticipating another successfui

show for 1978 and are projecting

increased interest and attendance for

the future as microcomputers reduce

in price and gain in popuiarity. A crowd around the M/7*S OEM Products d/sp/ay

Computer Notes Jan/ Feb 1978 25

tntroducing the Compact Attache^ Computer

77?e <4ffac/ie /s an affracf/Ve desMop compter f/?af was recenf/y /nfroduced Py PER7EC

COMPUTER CORPORA 7/ON's M/cro.sysfe.-ns D/v/s/on.

Pertec Computer Corporation's Micro-

systems Division recently introduced

a powerful desktop computer called

the A t t a c h ^ The Attach^ weighs

25 pounds and is built around the 8080

M P U . Its basic configuration includes

a C P U board, video board, turnkey

monitor board, and a full 64-character

alphanumeric ASCI) keyboard.

Standard features of the Attach^

inciude Light Emitting Diode (LED)

indicators for on/off and systems

status, a reset switch for return to the

P R O M monitor, and a monitor P R O M

that controls computer operation from

the keyboard. Also standard is a video

output jack for providing full upper

and lower case character generation,

16 lines of 64 characters each, and a

choice of black on white or white on

black character display with cursor

control.

The Attache's circuitry uses the

S-100 bus configuration with a 10-s!ot

board capability. Also standard with

the system on the turnkey board is 1K

R A M with extra sockets for three

256-byte P R O M s . An Audio Cassette

Recorder (ACR) SIO board is another

of the Attache's standard features, as

is a 16K Dynamic R A M Memory Board

that uses less than three Watts of

power and has an access time of 350

nanoseconds.

In addition to its list of standard

features, the Attache also offers high

reliability due to forced air cooling

over the vertically mounted cards, its

power supply provides 10V at 10A

(regulated to 5V on boards) with pre-

regulated plus/minus 18V at 2A. The

Attache also features greater possible

expansion, because only three of the

ten slots are used by required boards

(the C P U , video, and turnkey monitor),

leaving seven slots for expansion.

Floppy disk systems and software,

including i C O M ' s @ FD3712 Dual Disk

Desk Top IBM-formatted system or the

FD2411 Microfloppy with interface

supported by FDOS - H I and D E B B) ^

(Disk Extended BASIC by iCOM) , are

available as options for the Attach^.

Other options include an audio cas-

sette recorder (KCACR) board,

110-9600 baud RS232 port, 16K byte

memory board expansion for up to 64K

of usable R A M , a 16K BASIC R O M

board with autojump start, and CSave

and CLoad cassette routines that are

included in BASIC . A ten-key pad for

high-speed data entries in business or

statistical applications and plug-in

compatibility for many versatile S-100

boards are additional options.

The Attach^ is contained in a stylish

white cameo case and is priced below

competitive systems. The Attache

business computer is available at the

more than 40 MITS Computer Centers

across the continent.

26 Computer Notes Jan/ Feb 1976 26

Machine Language to BASiC Converter
By Richard Ranger

An annoying but necessary step in

using the machine ianguage interface,

DEFUSR, in MiTS@BASiC is the

conversion of the machine ianguage

program into POKE statements within

the calling BASiC program. Using the

foiiowing program, MiTS BASiC users

may utiiize the machine ianguage

subroutines to enhance the capabii-

ities of their computers.

Machine ianguage subroutines that

can be interfaced to BASiC through

the use of DEFUSR have been written

for a number of different functions,

from multi-precision addition to fast

analog to digitai conversion and

storage. A few of these programs have

appeared in Computer Notes, while

others are scattered throughout the

operation and checkout procedures of

various manuals for MiTS peripherais.

Generally, memory size is limited

during initiaiization. The machine

language program is placed above this

initialization limit, so that any opera-

tion within this subroutine wiii not

affect BASiC. This routine is normaiiy

accessed using the DEFUSR function

of MiTS BASiC, and, since the syntax

for this statement varies from version

to version, you should refer to the

manual to find the correct syntax for

caliing the DEFUSR function

subroutine.

The purpose of this program is to

eliminate the need to toggle in the

machine language subroutine each

time a new routine is used. Without

this program, it wouid be necessary to

toggle in the subroutine before cailing

it with any BASiC program or to

convert each octal iocation and in-

struction to decimal and then into a

statement of the form:

POKE (address), (instruction).

Using the following procedure, the

machine can write its own BASiC

program that contains aii the neces-

sary POKEs to dupiicate the machine

ianguage subroutine. By running this

POKE program, the machine ianguage

subroutine is quickiy POKEd into

position before it is needed by the

main or catting program.

If you are using disk BASIC,

proceed according to the following

instructions. First, bring up BASiC,

initiaiizing with at least one sequentiai

file and timiting its size so that your

particutar machine ianguage program

will reside in its appropriate location

(usually above the BASIC interpreter).

You must either toggle in the machine

language or use any method avaiiabie

to enter the machine ianguage pro-

gram initially, so the converter pro-

gram wiii be abie to use the PEEK

function of BASiC to acquire the data.

After this has been accomptished,

LOAD the converter program, and

RUN it. At this time, you will be

required to enter the beginning and

ending locations of the machine

language program (in decimal) and a

temporary fiie name for the POKE

program. The converter wiii begin

PEEKing the locations containing the

machine language routine and wii)

create a string comprised of a iine

number, the characters "POKE", ", ",

":", the address, and the contents of

the PEEKed iocation. This string of

characters is then written on the disk

in ASCi) under the temporary fiie name

AND. AND may be merged with any

other program which does not contain

the same iine numbers.

This method of creating machine

language subroutines that can be

interfaced with BASiC aiiows you to

write several different routines, merge

their corresponding POKE programs

into a iarger BASiC program, and caii

them much the same as BASiC

subroutines are calied.

if you do not have a disk but still

require the use of machine ianguage

subroutines, the temporary POKE

program must be written in ASCii but

pfaced on a medium other than fioppy

disk. This probiem may be resoived in

two different ways, depending upon

whether you have access to a teletype

with a paper tape punch and reader or

if you are limited to a cassette

recorder and mag tape.

if you do have access to a tetetype,

load the machine language program as

before and delete lines 30, 35, and 140

from the converter program. Line 110

of the converter must be changed to

read: 110 PR)NT T$. Enter the con-

verter program, make all the necessary

changes, type RUN, turn on the paper

tape punch, and type a carriage return.

The computer wiii then print the POKE

program on paper tape. After this has

been done, this ASCII paper tape may

be merged with the main BASiC

program by ioading the main program

and then reading in the paper tape

program through the paper tape

reader. Again, note that the line

numbers of the POKE program and the

main program must be different.

if you do not have access to a

teietype or a floppy disk, your POKE

program must be saved in ASCii on a

cassette recorder. To accompiish this,

load the machine ianguage as before

and be sure that BASiC has been

initiaiized with a "C" when W A N T SiN-

COS-TAN was asked. (This write-up

assumes that the reader is using a

version of BASiC that incorporates the

CONSOLE command.)

Delete iines 30 and 35, and change

or add the foiiowing iines accordingiy:

Conf/nued on page 28

Easy Ftoppy Disk Aiignment Check - conf/nued from page 7

!0 PRINT: PRINT"PIP - VER 4-0"
SO CLEAR 0 : X = F R E (0) - t 5 0 0 ! l F X<0 THEN CLEAR 600 ELSE IF x=-32000 THEN
CLEAR 33000 ELSE CLEAR X

30 DIMT2([5) : F0RY=OT8 I5 : TS (Y) = - [:NEXTY: P R I N T " * " ; :LINEINPUTBS
40 IFBS-""THENCLEAR200:EN<D
50 IF L E N (B S) * 3 THEN CS=RIGHTStBS,LEN(BS)-3) ELSE CS=B$
60 B S = L E F T K B S , 3)
70 IFBS="DAT"THEN6S0
80 IFBS="C0P"THEN87O
90 IFBS="LIS "THEN800
!00 IF BS="CNV" THEN 1040
M O IFBi="DIR"THENF=-I :G0T027O
[20 IF BS="SRT" THEN F=O :D IMAS (255) :G0T027O
130 IFBS<>"INI"THE-<iPRINT"ERR": G0T02O
[40 G0SUB 760
[50 A S = S T R I N G H [3 7 , 0) : M I D K A S , [36 ; [) = C H R H 2 5 5)
[60 F0RT=6T076
[70 F0R S=0 T0 3[
[80 MID$ (AS ,] , 2)=CHR! . (T) + CHR :< (S * [7)AND3[)
[90 G0SUB 6OO:DSK0S AS, S
200 NEXT S; T
2)0 T=7O:G0SUB 600 'DIRECT0RY TRACK
220 AI=CHRSC70) + CHRS(0) + C H R K 0) + C H R K [2S)+CHRi([27) + CHRS(0)
230 AS=AS+CHRS<03+CHRSC255)+STRINGS([27 ,0)+CHRSC255)
240 DSK0SAS,0

Conf/nued on page 28

Computer Notes Jan/ Feb 1978 27

Easy Floppy Disk Alignment Check - conRnMecf Machine Language to BASiC Converter - conf<nued from page 27

ELSE A K I) = N S + "

250 PRINT :PRINT"D0NE"
S60 G0T02O
270 G0SUB76O :0PEN"0 " , 1 , " R R " , A

260 PRINT*1 , 1 : C L 0 S E 1 : K I L L " R R " , A
290 PRINT
300 PRINT"DIRECT0RY DISK"JA
310 PRINT: 1 = 0
320 F0RS=OT0 31
330 A i = D S K I K 1 7 * S A N D 3 1)
340 At=LEFTttAt, 135)
350 Ai=RIGHTS(AS , 128)
360 F0R T=0 T0 7
370 B$=LEFTKAS.<<T+r) '*16)
380 Bi=RIGHT$tBS<16)
390 N i=LEFTtCBi , 8)
400 BS=RlGHTStBS, 8)
410 X=ASCtBS) : B t = R ! G H T K B $, 7) :Y=ASCtB$)
420 B i = R I G H T H B S , 6) : Z = A S C { B $)
430 IFASCCNS) = 0THEN470
440 IFASC(N !) = 255THEN490
450 R$= "S " : IFZ<>2THENR$= "R "
460 IF F THENPRINTNS;" " ; R $; " ";x^ "
R i+ " " +STR$CX)+ " " " ^ S T R t t Y) : 1 = 1 + 1
470 NEXTT
480 NEXTS

490 I F F 0R 1 = 0 THEN PRINT: G0T0 20
500 IF 1=1 THEN 560
510 SW=0

520 F0R J = 0 T0 1-2
530 IF A : (J) > A K J + 1) THEN SWAP A S (J) ; A H J + 1) : S W = - 1
540 NEXT

550 IF SW THEN 510
560 F0R J=0 T0 I-[
570 PRINT A K J)

580 NEXT
590 PRINT:G0T02O
600 IFTS(A)<'--1THEN640
6tO I F (INP<8)AND64)=OTHENT2{A) = O :G0T064O
620 V A I T 8 , 2 , 2 : 0UT9 , 2
630 G0T06IO
640 IFT2 (A) = TTHENRBTURN
650 D=1:IFT2(A)>TTHEND=5

660 VAI T8* 2 , 2 : 0UT9 , D: T2<A) = T2C A)-2* (D- 1-5)
670 G0T064O
680 INPUT"TRACK"jT : IF T<0 THEN 20 ELSE INPUT"SECT0R"^S
690 G0SUB76O:G0SUB6OO
700 A i = B S K H (S) : F 0 R I = OT0LEN(A$)-l
7t0 TlS=0CTS(ASC(RIGHTCA,LEfxi(AS)-I)))
720 T2S=LEFT$t" 0 0 0 " , 5 - L E N C . T H)) + T H : PRINT T 3 H
730 IF I M0D 8=7 THEN PRINT
740 NEXT I : PRINT
750 G0T0 680
760 A=VAL(C$)
770 IFA<O0RA> I5THENPRINT"ERR": G0T02O
78 0 0 U T 8 , 1 2 8 : 0 U T 8 , A
790 RETURN
800 G0SUB76O

810 C $ = R I G H T K C i , L E N (C H - 1+^A>9)) : IFASC<C$)o4B54THENPRINT "ERR" : G0T02O
820 C : = R I G H T K C i < L E N (C i) - l)

830 0 P E N " I " , I..CI..A
840 IFE0F(])THENCL0SE1:G0T02O
850 LINEINPUT*1 ,A$
860 PR1NTA$:G0T084O
870 G0SUB76O:B=A
880 C $ = R I G H T K M , L E N < C t) - I-HA>9)) : I F A S C C C i) o & 0 54THENPRINT"ERR": G0T02O
890 Ct=RIGHTKC$<LEN(C$)- I) :G0SUB76O : C=A
900 PRINT"FR0M T0 "^.C;
910 INPUTAS: IFASC(A$)<*ASC("Y ")THEN20
920 F0RT=OT076
930 0UT8, 128 :0UT8,C
940 A=C:G0SU$6OO:0UT8, 128 :0UT8 ,B :A=B :G0SUB6OO
950 F0RS=OT031

960 0UT8' 1 2 8 : 0 U T 8 , B : B $ = D S K H C S)
970 F$= DSKI $ { S) : I FFtoBSTHENPRIN T"REREAD": G0T09 60
980 0 U T 8 * ! 2 8 : 0 U T 8 ' C
990 DSK0SB$, S : C i = D S K H (S) : IFC*<*BSTHENPHINT"REWRITE" :G0T09 59
1000 NEXTS
1010 NEXTT
1020 PRINT"D0NE"
1030 G0T02O
1040 G0SUB 760 'ENABLE DISK
1050 F0R T=6 T0 76
1060 G0SUB 600 ' P0SITi0N T0 TRACK T
1070 F0R S=0 T0 31
1080 A : = D S K I i (S) : IF A S C (M 1 0 i (A : , 3 , t))<>0 THEN 1)20
1090 I F M I D $ (A S . , 1 3 6 , l) = CHRit255) THE!J 1120
1100 MIDSCAS ; 136 * l) = CHRIt255)
1110 DSK0$ AS , S
1120 NEXT S

1130 NEXT T: G0T0 20
0K

CHRNGE LINE 188 TO RERD:
186 =K3+P3+H3+S3+K3+03+P*+B3+S3+V$+0$+P3+Ci+s$+Z3+CHR* < >

CHRNGE LINE 118 TO RERD:

118 FOR J=1 10 LEN<T$) :FR=RSC<MIM<T$, J, 1))
R W LINE 112:

11S URIT 6,128,128: 0UT7, PR: NEXT J
CHRNGE LINE 148 TO RERD:

148 REM THIS IS THE CONSOLE C0MHRNP FOR R 2SI0
ROD THE FOLLOWING LINES:

142 T*="CONSOLE 16,8"+CHR#<13^
144 FOR 1=1 TO 188 :REM R SLIGHT DELRV

146 NEXT I
148 FOR K=1 TO LEN<T$)
158 PR=RSC<MIC<#<T$, K, 1>>
152 ktRIT 6, 128,128 : 0UT7, PR
154 NEXT K

At this time, start the cassette

recorder (record mode), and, after a

few seconds, type RUN, followed by a

carriage return. The added parts of the

program will allow the computer to

place the POKE program on cassette

tape and will follow it with a CON-

SOLE command to the main terminal

in use. If an I/O card other than a 2SiO

is used for this terminal, line 142 must

be changed in accordance with the

appropriate console register setting

for that particular I/O card (see page

34 of your BASIC manual). After the

POKE program has been made on

cassette, it may be merged with the

main BASIC program by first LOADing

the main program into the computer,

then typing CONSOLE 6, 3, followed

by a carriage return. The computer will

now take in data from the input port

#7, and, when all of the POKE program

has been entered, it will CONSOLE

back to the main terminal. (Note again

that the line numbers of the POKE

program must be different from the

line numbers of the main program.)

In all of the procedures just out-

lined, the entire program, main BASIC

plus the POKE program, may be saved

together as one main program after

they are both in the computer's text

buffer. The unmodified conversion

program set up for disk BASIC users is

also given in this article.

Program on Page 29

About The Author

R/c/7ard Ranger, a M /7S eng/neer<ng tec/rn/-

c/an, /s a Nayy yeferan wf)o worked /n

a/'rPorne reconnassance. Re /s currency

studying af f/ie Un/vers/fy of N e w Mex/co for a

degree /n E/ecfr/ca/ Eng/neer/ng.

28 Computer Notes Jan/ Feb 1976 28

Machine Language to BAStC Converter - con?;Pued

S CLERR 5 8 8

18 INPUT "STRRT LOCRTION '^TRT
28 I NF'JT " STOF LOCRT ION" , STP
38 LINE INPUT"FILE NW1E " ;N#
35 OPEN " 0 " , Ni, a
48 K=18

58 FOR I=TRT TO STP STEP 3
68 K$=STR*<PEEK<I)) : Y*=STR3<PEEK<I+1)) :ZS=STR3 ' :PEEK(I+2)>
78 H # = S T R $ C I) : B $ = S T R * t l + l) : C $ = S T R $ C I +2)

S3 Ki=STR$t:K)
9 8 F # = " P 0 K E " : S S = " , " : 0 ^ = " : "
188
118 PRINT # 1 , T $
.128 K=K+18
1 3 8 NEUT I
1 4 8 CLOSE 1

FOR ASSEMBLER/EDITOR R 1 . 0

More on the K C A C R - conf/nued from page 3

FEF$$
NAM PUNKCR
OPT NOG

OUTCH EQU $FDF5
0UT2H EQU $FDE3
CRLF EQU $FFAB
STACK EQU $3FFF
ORG $00 F3
FCB $FF
ORG $4000

* ENTRY LINE FOR BASIC V I . 0 R 3 . 2
LDX #$1AB2
BRA START

*ENTRY LINE FOR EDITOR R 1 . 0
LDX #$090B
BRA START

GENTRY LINE
LDX#$1C81

START SIX HERE
LOS #STACK
BSR LEDTRL
L D X # 0
SIX BEGADR
LDX #$E6
BSR PUN
LDX #$100
SIX BEGADR
FCB $CE

HERE FCB 0 , 0
BSR PUN
LDX #EOF
BSR PMESS
BSR LEDTRL
JMP CRLF

LEDTRL CLR A
GLR B

LED1 J S R O U T C H
DEC A
BNE LED!
RIS

PUN SIX LASADR
PUNO LOX #FORM
BSR PMESS
LDA A LASADR+1
SUB A BEGADR+1
LDA B LASADR
SBC B BEGADR
BNE PUN2
CMP A #16
BCS PUN3

PUN2 LDA A
PUN3 STA A

ADD A #4
JSR 0UT2H
I NX

BSR PNCH2
BSR PNCH2
LDX BEGADR

PUN4 BSR PNCH2
DEC NUMBYT
BPL PUN4
SIX BEGADR
COM A
JSR 0UT2H
DEX

#15
NUMBYT

CPX LASADR

BNE PUNO

SENDIT JSR OUTCH
I NX

PMESS LDA B X
BPL SENDIT
RIS

PNCH2 LDA B X
ABA
PSH A
TBA
JSR 0UT2H
PUL A
I NX
RTS

FORM FCB $ D , $ A , ' S , '1 , $ F F

BEGADR RPB 2
LASADR RMB 2

NUMBYT RMB t
EOF FCB $ D , i A , ' S , ' 9 , $ F F

ORG $00F3
FCB $03
END

00001 NAM PUNKCR
00002 OPT NOG

00003 FDF5 OUTCH EQU $FDF5

00004 FDE3 0UI2H EQU $FDE3

00005 FFAB CRLF EQU iFFAB

00006 3FFF STACK EQU $3FFF
00007 00 F3 ORG $00F3
00003 00F3 FF FCB $FF

00009 4000 ORG i 4 0 0 0
00010 * ENTRY LINE FOR BASIC V I .
0001 ! 4000 CE 1AB2 LDX #$!AB2

000)2 4003 20 08 BRA START
00013 *ENIRY LINE FOR EDITOR R l .
00014 4005 CE 090B LDX #$090B

00015 4008 20 03 BRA START
00016 GENTRY LINE FOR ASSEMBLER/
0001 7 400A C E 1 C 3 1 LDX #$1CS1
00018 400D FF 4 0 2 7 START STX HERE
00019 4010 8E 3FFF LDS #STACK
00020 4013 3D 20 BSR LEDTRL
00021 4015 CE 0000 LDX #0
00022 4018 FF 4098 SIX BEGADR

00023 401B CE 00E6 LDX # iE6

00024 401 E 8D 1 E BSR PUN
00025 4020 CE 0100 LDX # $100
00026 4023 FF 4098 S IX BEGADR
00027 4026 CE FCB M E
00028 4027 00- HERE FCB 0 , 0
00029 4029 SD 13 BSR PUN

00030 402B CE 4 0 9 D LDX #EOF
00031 402 E 8D 53 BSR PMESS
00032 4030 8D 03 BSR LEDTRL

00033 4032 7E FFAB JMP CRLF
00034 4035 4 F LEDTRL CLR A
00035 4036 5 F CLR B
00036 4037 BD FDF5 LED1 JSR OUTCH
00037 403A 4A DEC A
00038 403B 26 FA BNE LED!

00039 403D 39 RIS
00040 403E FF 409A PUN STX LASADR

00041 4041 CE 4093 PUNO LDX #FORM

00042 4044 8D 3D BSR PMESS
00043 4046 B6 409B LDA A LASADR+1
00044 4049 B0 4099 SUB A -BEGADR+1
00045 404 C F6 409A LDA B LASADR
00046 404 F FB 4098 SBC B BEGADR
0004 7 4052 26 04 BNE PUN2
00048 4054 81 10 CMP A #16
00049 4056 25 02 BCS PUN3
00050 4053 86 0F PUN2 LDA A #15
00051 405A B7 409C PUN3 STA A NUMBYT
00052 405 D SB 04 ADD A #4
00053 405 F BD FDE3 JSR 0UT2H
00054 4062 08 INX
00055 4063 8D 23 BSR PNCH2

0005 6 4065 8D 21 BSR PNCH2

0005 7 4067 FE 4098 LDX BEGADR
00058 4 06 A 8 D IC PUN4 BSR PNCH2

00059 406C 7A 409C DEC NUMBYT
00060 406F 2A F9 BPL PUN4
00061 4071 FF 4098 STX BEGADR
00062 4074 43 COM A

00063 4075 BD FDE3 JSR 0UT2H
00064 4078 09 DEX
00065 4079 BC 409A CPX LASADR
00066 407C 26 C3 BNE PUNO
00067 407E 39 RTS

00068 407F BD FDF5 SENDIT JSR OUTCH

00069 4082 08 INX
00070 4083 E6 00 PMESS LDA B X
00071 4085 2A F8 BPL SENDIT

00072 4087 39 RTS

000 73 4088 E6 00 PNCH2 LDA B X
000 74 408A IB ABA
00075 408B 36 PSH A
00076 408C 17 TBA
000 77 408 D BD FDE3 JSR 0UT2H

000 78- 4090 32 PUL A
00079 4091 08 INX
00080 4092 39 RTS

00081 4093 0D FORM FCB $ D , $ A , ' S ,
00082 4098 0002 BEGADR RMB 2

00083 409A 0002 LASADR RMB 2

00084 409C 0001 NUMBYT RMB 1
00085 409D 0D EOF FCB $ D , $ A , ' S ,
00086 00 F3 ORG $00F3
0008 7 00 F3 03 FCB $03
00088 END

TOTAL ERRORS 00000

ENTER PASS
Conf/nued on page 30

Computer Notes Jan/ Feb 1978 29

More on the KCACR - cont/wed

S00B00Z050554E4B43522020E i

S i0400F3FF09

Si i E4300CE! AB22008CE090B2003 CEiCSi FF4027gE3FFF8D2 0CE0000FF4098Eb

Si i E40iBCE00E68Dl ECE01 00FF4098CE00008Di3CE409DgD53SD037EFFAB4Fcj
Si i E40365FBDFDF54A2 6FA39FF4 09ACE4 0938D3DB6409BB04099F64 09AF24 05A
Si i E405 i 9 3 2 6 0 4 8 i i 02502860FB 7409C (B04BOFDE3088D238D2 ! FE40983DiC9D
Si J E406C7A409C2AF9FF409843BDFDE309BC409A26C33 9BDFDF508E6002AFSS5
Si i 4 4 0 8 7 3 9 E S 0 0 i 3 3 S i 7BGFDE33208390D0A533i FFF3
Si 08409D0D0A5339FF78
Si 04 00 F3 03 05
S903 0000FC

KCACR MONITOR

INVERSE ASSEMBLY BY DLJ

***** IN ROUTINE * * * * *

FD00 3D 6 0 BSR ($ 6 0) $FD62 GO POLE FOR CHARACTER

FD02 C0 53 SUB B # 'S IS IT THE LETTER ' S '

FD04 26 FA BNE ($FA) $ F D 0 0 YES , GO BACK
FD8S 8 D 5A BSR ($ 5 A) $FD62 POLE FOR NEXT CHARACTER

FD08 Ci 3 9 CMP B # ' 9 IS IT A ' 9 '

FD0A 2 7 62 BEQ ($ 6 2) $FD6E I F YES ,DONE

FD0C C] 31 CMP B if't IS IT A 'i '

FD0E 26 F0 BNE ($ F 0) $FD00 BACK TO START I F NOT

FD!0 4F CLR A ZERO CHECKSUM

FD) i 8D 38 BSR ($ 3 8) SFD4B BET A BYTE

FDi3 C0 02 SUB B # $ 0 2 ADJUST BYTE COUNT

F0i5 D7 F9 STA B $F9 STORE AT BYTECT

FDi 7 8D 4 0 BSR ($ 4 0) $FD59 GET ADDRESS

FDi9 8D 3 0 BSR ($ 3 0) $FD4B GET DATA BYTE

FDiB 7A 00 F9 DEC $ 0 0 F 9 DECREMENT BYTE COUNT
FDi E 2 7 09 BE3 ($ 0 9) $FD29 I F ZERO DONE

FD2 0 E7 00 STA B $ 0 0 , X STORE IT

FD22 Ei 00 CMP B $ 0 0 , X MEMORY OK7

FD24 26 09 BNE ($ 0 9) $FD2F BRANCH I F NOT

FD26 08 INX BUMP POINTER

FD2 7 2 0 F0 BRA ($ F 0) $ F D i 9 BACK FOR NEXT CHARACTER

FD29 4C INC A INCREMENT CHECKSUM

FD2A 2 7 04 BEQ ($ D 4) $FD00 BRANCH I F ZERO, ALL OK

FD2C C6 43 LDA B iC 'C LOAD IN ' C FOR CHECKSUM ERROR

FD2E 8C FCB $8C CPX SKIP
FD2F C6 4D LDA B # 'M LOAD IN ' M ' FOR MEMORY ERROR

FD3i BO FF81 JSR $FF8i DUMP TO OUTCH
FD34 2 0 FE BRA ($FB) $FD3i LOOP BACK ASAIN
***** INHEX *****
FD36 8D 2A BSR ($ 2 A) $FD62 POLE FOR CHARACTER
FD38 C0 3 0 SUB B <y$30 STRIP ASCII

FD3A SB F0 BMI ($ F 0) $FD2C STOP I F NOT VALID HEX

FD3C Ci 09 CMP B ii<$09

F03E 2 F 0A BLE ($ 0A) $FD4A NOT HEX

FD40 Ci i i CMP B # i i i

F042 28 iB BMI ($ E 8) $FD2C NOT HEX
FD44 Ci 16 CMP B # $ i 6

FC46 2 E E4 BGT ($ E 4) $FD2C NOT HEX

FD48 C0 07 SUB B # $ 0 7 GET BCD VALUE
FD4 A 39 RTS RETURN
***** BYTE * * * * *

F04B 8 D E9 BSR ($ E 9) $FD36 SET A CHARACTER

FD4D 58 ASL B SHIFT TO HIGH 4 BITS
FD4E 58 ASL B

FD4F 58 ASL B
FD50 58 ASL B

FD5i D7 F8 STA B $F8 STORE IT TEMP
FD53 8D Ei BSR ($ E i) $FD36 GET 2ND HEX DIGIT

FD55 DB F8 ADD B $F8 COMBINE D IGITS TO GET BYTE
F05 7 iB ABA ADD TO CHECKSUM
FD58 3 9 RTS RETURN
***** BADDR *****
FD59 8 D F0 BSR ($ F 0) $FD4B GET HALF OF ADDRESS

FD5B D7 FA STA B $FA STORE IT
FD5D 3D EE BSR ($EC) $FD4B SET REST OF ADDRESS
FD5F 7E FF68 JMP $FF68 JMP MONITOR AND COMPLETE
***** INCH * * * * *

FD62 F6 F01Z LDA B $ F 0 i 0 POLE KCACR FOR FLAG
FD65 56 ROR B ROTATE INTO B

FD66 25 FA BCS ($FA) $F062 BACK AGAIN I F SET
FD68 F6 F0i i LDA B $ F 0 i i LOAD IN CHARACTER
FD6B C4 7F AND B # $ 7 F STRIP ASCII
FDSb 39 RTS RETURN
FD6E 2 0 5 2 BRA ($ 5 2) $FDC2 MONITOR RETURN
FD70 0D FCB $ D , $ A , ' S , $ B 1 FORM C R / L F / S / - 1

30 Computer Notes Jan/ Feb 1976 30

More on the K C A C R - cont/nued

***** OUT ROUTINE * * * * *

FD74 8D 62 BSR ($ 6 2) $FDD8 GET HIGH-ORDER ADDRESS
FD76 DF FD STX $FD STORE IT
FD78 8D 5E BSR ($ 5E) $FDD8 GET LOW-ORDER ADDRESS
FD7A DF F4 STX iF4 STORE 11
FD7C 8D 47 BSR ($ 4 7) $FDC5 GO PUNCH LEADER
FD7E CE FD6F LDX #$FD6F LOAD FORM POINTER
FD8i 08 INX BUMP POINTER
FD82 E6 00 LDA B $ 0 0 , X LOAD CHARACTER
FD84 8D 6F BSR ($ 6F) $FDF5 GO PUNCH IT
FD86 2A F9 BPL ($F9) $FD8i BACK FOR MORE
FD88 96 F5 LDA A $F5 SUBTRACT LOW ORDER BYTES
FD8A 90 FE SUB A $FE
FD8C D6 F4 LDA B $F4 SUBTRACT HIGH ORDER BYTES
FD8E D2 FD SBC B $FD
FD90 26 04 BNE ($ 0 4) $FD96 LOTS MORE TO PUNCH
FD92 8i 0E CMP A # $ 0 E LESS THAN]5 TO PUNCH
FD94 25 02 BCS ($ 0 2) $FD98 BRANCH I F DONE
FD96 86 0D LDA A # $ 0 D NO, SO PUNCH [5
FD98 97 FF STA A $FF STORE A BUFFER: NUMBYT
FD9A 8B 04 ADD A #$04 ADJUST # BYTES
FD9C 8D 45 BSR ($ 4 5) $FDE3 PUNCH 2HEX
FD9E CE 00 FD LDX #$00FD LOAD BEGADR POINTER
FDAi 8D 2B BSR ($2B) $FDCE PUNCH 2
FDA3 8D 29 BSR ($ 2 9) $FDCE PUNCH 2
FDA 5 DE FD LDX $FD LOAD BEGADR
FDA7 8D 25 BSR ($ 2 5) $FDCE PUNCH DATA
FDA 9 7A 00FF DEC $00FF DEC NUMBYT
FDAC 2A F9 BPL ($F9) $FDA7 BACK IF NOT DONE
FDAE DF FD STX $FD STORE ADDRESS
FDB0 43 COM A COMPLIMENT CHECKSUM
FDBt 8D 30 BSR ($ 3 0) $FDE3 PUNCH 2HEX
FDB3 09 DEX DECRIMENI ADDRESS

FDB4 9C F4 CPX $F4

FDB6 26 C6 BNE ($C6) $FD7E BACK IF NOT DONE

FDB8 C6 53 LDA B # ' S LOAD ' S '

FDBA 8D 39 BSR ($ 3 9) $FDF5 PUNCH 11

FDBC C6 39 LDA B # '9 LOAD ' 9 '

FDBE SD 35 BSR ($ 3 5) $FDF5 PUNCH 11

FDC0 SD 03 BSR ($ 0 3) FDC5 PUNCH LEADER

FDC2 7E FFAB JMP $FFAB BACK TO MONITOR CRLF
***** LEADER * * * * *
FDC5 86 28 LDA A #$28 LOAD LOOP COUNT

FDC7 5F CLR B CLEAR FOR NULLS

FDC8 8D 2B BSR ($2B) $FDF5 GO PUNCH

FDCA 4A DEC A DECRIMENI LOOP

FDCB 26 FB BNE ($FB) $FDC8 BACK I F NOT DONE

FDCD 39 RTS RETURN

FDCE E6 00 LDA B $ 0 0 , X GET POINTED CHACIER

FDD0 iB ABA ADD TO CHECKSUM

FDDt 36 PSH A SAVE IT

FDD2 [7 TBA TRANSFER

FDD3 8D 0E BSR ($ 0E) $FDE3 PUNCH IT

FDD5 32 PUL A RETURN CHECKSUM

FDD6 08 INX BUMP ADDRESS

FDD7 39 RIS RETURN
***** ADDRESS * * * * *

FDD8 BD FF82 JSR $FFS2 SEND OUT A SPACE

FDDB C6 3F LDA B # '7 LOAD A ' ? '

FDDD BD FF81 JSR $FF8t TYPE IT

FDE0 7E FF62 JMP $FF62 JMP BADDR IN MONITOR

***** 0UT2H *****
FDE3 16 TAB COPY BYTE TO B

FDE4 54 LSR B SHIFT RIGHT

FDE5 54 LSR B

FDE6 54 LSR B

FDE7 54 LSR B

FDE8 8D 0] BSR ($ 0 t) $FDEB OUTPUT FIRST DIGIT

FDEA]6 TAB BYTE INTO B

FDEB C4 0F AND B # $ 0 F GET RID OF LEFT DIGIT

***** OUIHR *****
FDED CB 30 ADD B #$30 MAKE IT ASCII

FDEF C) 39 CMP B # '9 IS IT A NUMBER?

FDF[23 02 BLS ($ 0 2) $FDF5

FDF3 CB 07 ADD B # $ 0 7 I F I IS A LETTER ADD 7

***** OUTCH *****
FDF5 37 PSH B SAVE CHARACTER

FDF6 F6 F010 LDA B $F0t0 KCACR CLEAR?

FDF9 2B FB BMI ($FB) $FDF6 BACK IF NOT

FDFB 33 PUL B REGAIN CHARACTER

FDFC F7 F011 SIA B $ F 0 i [OUT TO KCACR

FDFF 39 RTS RETURN

Demonstration Program - conf/nued from page 74

L IST

5 CLEAR 250
IB PRINT"HI ! I 'M A COMPUTER. MY NAME IS HAL . "
20 INPUT"KHAT'S YOUP.S(TYPE YOUR NAME AND HIT THE RETURN K E Y) " ; A $
30 PRINT"WELL " ; A $; " A COMPUTER CAN DO A LOT OF THINGS. FOR INSTANCE,"
40 PRINT"WE ARE A SUPER CALCULATER. LET 'S TRY ONE. WE 'LL TRY AN EASY"
50 PRINT"ONE FIRST. WOULD YOU LIKE TO ADD, SUBTRACT, MULTIPLY, DIVIDE"
60 PRINT"OR FIND A SQUARE OR SQUARE ROOT? (TYPE YOUR CHOICE AND HIT"
70 PRINT"RETURN)"
90 INPUT B$
100 IF B$="DIVIDE"THEN160
110 IF B$="MULTIPLY"THEN238
120 IF B$="ADD"THEN260
130 IF B$="SUBTRACT"THEN290
132 IF B$="SQUARE ROOT"THEN650
134 IF B$="SQUARE"THEN670

140 P R I N T " I ' M SORRY, I DON'T UNDERSTAND " ; B $; " . PLEASE USE ADD, "
150 PRINT"SUBTRACT, MULTIPLY, D IV IDE , SQUARE RCOT OR SQUARE. " :GOTO 90
160 PRINT"FIRST THE NUMBER YOU ARE D I V I D I N G . "
165 PRINT"NOT OVER 16 D I G I T S , P L E A S E . " ; : I N P U T A#
170 INPUT"NOW THE D I V I S O R " ; B t : C # = A f / B #

180 PRINT"THE ANSWER I S " ; C #

190 INPUT"TRY ANOTHER (YES OR N O) " ; C $

200 IF L E F T $ (C $, 1) = " Y " T H E N 9 0

210 IF LEFT$ (C$, 1) = "N "THEN320

220 PR INT " I 'M SORRY, I DON'T UNDERSTAND " ; C $; " . PLEASE USE YES OR N O . " :

GOTO190

230 INPUT"THE FIRST NUMBER (NOT OVER 16 D I G I T S) " ; A t
240 INPUT"THE SECOND" ;B# :C#=A#*B# :GOTO180
260 INPUT"THE FIRST NUMBER (NOT OVER 16 D I G I T S) " ; A #
270 INPUT"THE SECOND" ;Bt :Ct=At+B# :GOTO180
290 INPUT"THE NUMBER YOU ARE SUBTRACTING FROM (NOT OVER 16 D I G I T S) " ; A #
300 INPUT"THE NUMBER YOU ARE SUBTRACTING";B#:Ct=A#-B#:GOTO180
320 PRINT"HAD ENOUGH ARITHMATIC " ; A $; " HUH? OF COURSE I CAN DO MORE"
330 PRINT"COMPLICATED MATH, TOO. BUT ENOUGH OF THAT. TELL YOU WHAT."
340 PRINT"TXPE ME A SENTENCE. " :C=0
350 LINE INPUT B$
360 PRINT"NOW I ' L L TELL YOU HOW MANY THERE ARE OF ANY LETTER IN THE"
370 PRINT"SENTENCE."
375 INPUT"WHAT LETTER SHOULD I COUNT" ;C$
380 IF LEN(C$)>1 THEN PRINT"ONLY ONE CHARACTER, PLEASE . " : G0T0375
385 IF C$=>"A" AND C$<="Z"THEN 395
390 PRINT"PLEASE, A LETTER . " :G0T0375
395 FOR X%=1 TO L E N (B $) : I F M ID$ (B$,X% , 1) =C$THEN C=C+1
396 NEXT
400 PRINT"THERE A R E " ; C ; " " ; C $; " ' S IN " ; B $
460 PRINT"HOW BOUT THEM APPLES? NOW LET 'S PLAY A SIMPLE NUMBER"
470 PRINT"GUESSING GAME. I ' L L CHOOSE A NUMBER BETWEEN 1 AND 1 0 0 . "

480 PRINT"YOU TELL ME WHAT YOU THINK IT I S . I ' L L TELL YOU IF"
490 PRINT"YOU ARE TOO HIGH OR TOO LOW OR CORRECT."
520 A = I N T (9 9 * R N D (1) + 1) : C = 0
530 PP.INT"OK, I ' V E GOT A NUMBER."
540 INPUT"YOUR GUESS" ;B
550 IF B>ATHBNPRINT"TOO HIGH" :C=C+1 :GOTO540
560 IF B<ATHENPRINT"TOO L0W" :C=C+1 :G0T0543
570 PRINT"YOU GUESSED IT - I N " ; C ; " TRIES ! "
580 INPUT"TRY AGAIN " ;B$
590 IF L E F T $ (B $, 1) = " Y " T H E N 520
600 IF LEFTS (B$, 1)= "N "THEN 640
610 PRINT"SORRY, I DON'T UNDERSTAND " ; B $; " . PLEASE USE YES OR N 0 . " : G 0 T 0 5
80

64 0 PRINT"NOW, WASN'T THAT MARVELOUS " ; A $; " ? AND SO ENDS"
645 PRINT"THE DEMONSTRATION." :END

650 INPUT"THE NUMBER YOU WISH TO FIND THE ROOT O F " ; A t
660 C#=SQR(At) :GOTO180
670 INPUT"THB NUMBER YOU WISH TO SQUARE";A#
680 Ct=At*At:GOTO 180
OK

32 Computer Notes Jan/ Feb 1976 32

A BASiC Memory Test - con&'nued from page 76

FUN

STARTING ADRESS? S3672
FINISHING ADRESS? 28 675

COMPLETE OR PARTIAL ANALYSIS <l=COM,e=PART.)? 0
TEST WORD *? 0

0 64 ERROR 28 672

28672
28 673

28673
28674

28674

28675

28 675
OK

64

0

64

64

0

64

64

64

64

ERROR

ERROR

ERROR

RUN

STARTING ADRESS? 28 672
FINISptNG ADRESS? 28 675
COMPLETE OR PARTIAL ANALYSIS (1=COM,0=PART .)? 0
TEST VORD *? 255

28 672 64

28673 64
26 6 74 64
28675 64

OK

RUN-

STARTING ADRESS? 28 672
FINISHING ADRESS? 28 672

28 672

PARTIAL

0
ANALYSIS (I=COM,

64
0=PART.)? 1.

ERROR

1 65 ERROR

2 66 ERROR

3 67 ERROR

4 68 ERROR

5 69 ERROR

6 70 ERROR

7 71 ERROR

8 72 ERROR

9 73 ERROR

10 74 ERROR

1 1 75 ERROR

12 76 ERROR

13 77 ERROR

14 78 ERROR

15 79 ERROR

16 80 ERROR

17 81 ERROR

IS 82 ERROR

19 83 ERROR

20 84 ERROR

21 85 ERROR

22 8 6 ERROR

23 8 7 ERROR

24 88 ERROR

25 39 ERROR

26 90 ERROR

27 91 ERROR

28 92 ERROR

29 93 ERROR

30 94 ERROR

31 9 5 ERROR

32 9 6 ERROR

33 9 7 ERROR

34 98 ERROR

35 99 ERROR

36 100 ERROR

37 101 ERROR

38 102 ERROR

39 103 ERROR

40 104 ERROR

41 105 ERROR

42 106 ERROR

43 107 ERROR

44 108 ERROR

45 109 ERROR

46 n e ERROR

4 7 111 ERROR

48 H 2 ERROR

49 113 ERROR

50 114 ERROR

51 115 ERROR

52 116 ERROR

53 11 7 ERROR

54 118 ERROR

55 119 ERROR

56 120 ERROR

57 121 ERROR

58 122 ERROR

59 123 ERROR

60 124 ERROR

61 125 ERROR

62 126 ERROR

63 127 ERROR

128 192 ERROR

129 193 ERROR

130 194 ERROR

131 195 ERROR

132 196 EF.RQ R

133 197 ERROR

Conf/nueP on page 34

Computer Notes Jan/Feb 1978

A BAStC Memory Test - conf/'nued

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

15 7

158

159

160

161

162

163

164

165

166

167

16S

169

1 70

1 71

1 72

1 73

1 74

175

176

1.77

1 78

198

199

2 0 0

201

2 0 2

203

204

205

2 0 6

207

208

209

210

211

212

213

214

215

216

217

218

219

220

2 2 1

22B

223

224

225

2 2 6

22 7

228

229

230

231

232

233

234

235

236

237

23S

239

240

241

242

ERROR

ERROR

ERROR

ERROR

ERFOR

ERROR

ERROR.

EF.ROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERPOR

ERROR

ERROR

ERROR

EPROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERRO R

ERRO R

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

28 672
OK

1 79

180

181

182

183

184

185

1 8 6

18 7

18S

189

190

19 1

64

243

244

245

24 6

24 7

248

249

250

251

252

253

254

255

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

EEEOF.

A = starting address

F = finishing address

E = compiete or partial anatysisfiag

Z = test word

C = confirms test word Z written and

read from memory

B = value of contents of A

D = error flag

LIST

1 REM * * * * A BASIC MEMORY TEST v!.***

2 REM WRITTEN BY DAVID C.CULBERTSON

10 INPUT"STARTIMG ADF.ESS" ;A : INPUT"FINISHIHG ADRESS"iF
11 INPUT"COMPLETE OR PARTIAL ANALYSIS C1 = COM , 0=PART .) " ; E

12 IF E=0 THEN INPUT"TEST WORD % " ; Z
13 IF A>F THEN GOSUB 200 : INPUT"NEV FINISHING ADRESS"JF:GOTO 13

14 I F Z>255 OR Z<0 THEN GOSUB 300:INPUT"NEW TEST WORD#"JZ:GOTO 14

15 IF A=>32 76S THEM 30
20 B=PEEK<A)
21 I F E=0 AND A=>S193 THEN GOSUB 50 : GOTO 23
22 I F A>8193 THEN GOSUB 100
23 PRINT A, B
24 A=A+1
25 IF A=>32 76S THEN 30
26 IF A>F THEN END
27 GOTO 20
30 A=A-65536:F=F-65536
31 B=PEEK<A)
32 IF E=0 THEN GOSUB 50 : GOTO 34
33 GOSUB 100

34 PRINT A+6553 6 , B
35 A^A+1
36 IF A=>F THEN END

37 GOTO 31
50 POKE A, Z :C=PEEK(A)

51 IF C=Z THEN 190
52 GOTO 150
100 FOR Z=0 TO 255
110 POKE A ,Z :C=PEEK<A)
120 I F C=Z THEN 140
130 I F C<>Z THEN GOSUB 150
140 NEXT Z

145 GOTO 190
150 POKE 1352 , IS :POKE 1360, 19
155 I F D=A THEN 165

159 I F A=*0 AND A<3276S THEN PRINT A , Z , C , "ERROR" : PRINT: GOTO 161
160 PRINT A+65536 ,Z ,C , "EF .F .0R" :PRINT
161 D=A:GOTO 170
165 P R I N T " " , Z , C, "ERROR" : PRINT
170 POKE 1352, 16: POKE 1360, 17
18 0 RETURN
190 POKE A,B:RETURN

200 PRINT"FINISHING ADRESS TOO LOW.PLEASE ENTER " ; :RETURN
300 PRINT"TEST WORD # TOO LOW. FLEASE INPUT " J : RETURN
OK

34 Computer Notes Jan/Feb 1978

H yow company can afford a pick up,
you can afford your own computer.

it's time io think of a computer like any othercost saving

business tool. And the computer every business can afford

isthe MITS"" 3 00 .

MiTS will monitor your inventory, make out your payroll,

do your scheduling, ordering, accounts receivable. All the

jobs that used to take weeks, days or hours to do, now can

be d o n e in a few minutes.

And believe it or not, the MITS 3 0 0 microcomputer

system is easier to operate than a pick-up truck. Most people

can-learn its typewriter-iike keyboard and

B A S I C language in a couple of hours

using a self-teaching package that makes

computer operation simple and easy.

All this, plus a full line of add-on

modular hardware, operating software

and pre-programmed applications soft-

-ware,makes MITS the ideal microcomputer

for a growing business. After a!!, it's m a d e by the people

w h o m a d e the first microcomputer.

So put the affordable microcomputer in your office,

alongside your typewriters and other office equipment, and

see what you've been missing. You'll wonder h o w you ever

ran your business without it.

If you're big enough to be in business, you're

big enough for a MITS.

^ C o m e in today for a demonstration.

DDDEFû
Products of ESS Pertec Computer Corporation,

computer peripheral equipment and distributed

get your MITS up!
Computer Notes Jan/ Feb 1978 35

f

(R>
Visit Ybur Nearest MITS Dealer

ARiZONA
Altair Computer Center
4941 E. 29th St.
Tucson, Arizona 85711
(602) 748-7 363
AltairComputer Center
3815 North Third St.
Phoenix, Arizona 85012
(602) 266-1141

ARKANSAS
JFK Electronics
3702 JFK Blvd.
N Little Rock, Arkansas 72116
(501) 753-1114

CAHFORNiA
Computer Kits
1044 University Ave
Berkeley, Calif 94710
(415) 845-5300
The Computer Store
820 Broadway
Santa Monica, Caiit. 90401
(213) 451-0713

COLORADO
Gateway Electronics
2839 W 44th Ave.
Denver, Colorado 80211
(303}458-5444
Sound-Tronix
900 Ninth Ave
Greeley. Colorado 80631
(303)353-1588
Sound-Tronix
3271 Dillon Dr. Pueblo Mail
Pueblo. Colorado 81008
(303)545-1097
Sound-Tronix
215 Foothills Pkwy.
Foothills Fashion Mall
Fori Collins, Colorado 80521
(303) 221-1700

FLORtDA
Altair Computer Center of Miami
7208 ?j.W. 58th St
Miami, Fla 33166
(305) 887-7408

Altair Computer Center of
Orlando
6220 S Orange Blossom Trail
Suite 602
Or lando.Flor ida32809
(305) 851-0913

GEORGtA
The Computer Systemcenter
3330 Piedmont Rd. N.E
Atlanta, 6a 30305
(404)231-169!

iLLtNOtS
Chicago Computer Store
517Ta!cottRd.
Park Ridge. Il l inois 60068
(312)823-2388
Chicago Computer Store
919 B N. Sheridan Rd.
Peoria,I l l inois 61614
(309) 692-7704
Chicago Computer Store

1 Il l inois Center Concourse
I H E . W a c k e r D r .
Chicago.I l l inois 60601

KANSAS
Advanced Micro Systems Inc.
5209 W 94 Terrace
Prairie Village. Kansas 66207
(913)648-0600

WEST ViRGiNiA
AND KENTUCKY
The Computer Store
Sui tes
Municipal Pkg Bldg
Charleston, W Virginia25301
(304) 345-1360

MASSACHUSETTS
Mits Computer Center
36 Cambridge St.
Burl ington, Mass.01803
(617) 272-1162

MtCHtGAN
Computer Store of Detroit
505^507 West11M)le R3;
Madison Heights, Michigan
48071
(313) 545-2225

The Computer Store of
Ann Arbor
310 E Washington St.
Ann Arbor. Michigan 48104
(313) 995-7616

MiNNESOTA
The Computer Room
3938 Beau D'Rue Dr.
Eagan,Minn.55122
(612)452-2567

MtSSOUR)
Gateway Electronics of St. Louis
8123-25 Page Blvd.
St Louis, Mo. 63130
(314)427-6116

NEBRASKA
Altair Computer Center
611 North 27th St # 9
Lincoln,Nebraska 68503
(402)474-2800

NEW MEXtCO
Computer Shack
3120 San Mateo N.E.
Albuquerque. New Mexico 87110
(505)883-8282

NEW YORK
The Computer Store of New York
55 West 39th St.
New York. New York 10018
(212) 221-1404

Micro Systems Store. Inc.
269 Osborne Rd.
Albany. New York 12211
(518) 459-6140

Simplif ied Business Methods
19 Rector St.
New York New York 10006
(212) 943-4130

NORTH CAR0DNA
Computer Stores of Carolina
1808 E. Independence Blvd.
Charlotte N C 28205
(704) 334-0242

OHtO
AltairComputer Center
5252 North Dixie Drive
Dayton Ohio 45414
(513) 274-1149
Altair Computer Center
26715 Brook Park Extension
No. Olmsted. 0h io44070
(216)734-6266
The Computer Store of Toledo
SHi l lwyck St
Toledo. Ohio 43615

OKLAHOMA
AltairComputer Center
110 The Annex
5345 East 41st St
Tulsa, Oklahoma 74135
(918) 664-4564

OREGON
Aitair Computer Center
8105S.W. Nimbus Ave.
Beaverton.Oregon 97005
(503)644-2314

PENNSYLVANiA
Microcomputer Systems, inc.
243 West Chocolate Rd.
Hershey,Pa.17033
(717) 533-5880

TEXAS
Swift Computers, Inc
3208 Belt l ineRd
Suite 206
Dallas, Texas 75234
(214)241-4088
Swift Computers, Suite145
6333 Camp Bowie Blvd.
Ft. Worth, Texas 76116
Altair Computer Center
7302 Harwin Dr.
Suite 206
Houston. Texas 77036
(713) 780-8981
Altair ComputerCenter
3206-A34th Si.
Lubbock. Texas 79410

UTAH
Microcosm inc.
534 West 9460 South
South Sandy, Utah 84070
(801) 566-1322

VtRGtNtA
Computer-To-6o
1905 Westmoreland St.
Richmond, Va. 23230
(804)355-5773
Megabyte Computer Assoc.
700 Stoney Point, Suite 7
Newtown Rd.
Norfolk, Va. 23502
(804)461-3079
Microsystems Computer Corp
Century Mai l—Crysta l City
2341 S. Jefferson Oavis Hghwy.
Arl ington, Va. 22202
(703) 979-5566

WASHtNGTON
Pasco Computer Store
6704 Argent Rd.
Pasco. Washington 99301
(509) 547-9014
Aitair Computer Center
14100 N.E. 20th St.
Beilevue Wash. 98007
(206) 641-8800

WtSCOMStN
Chicago Computer Store
285 West Northland Ave.
Appleton, Wisconsin 54911
(414)731-9559

CANADA
The Computer Place
186 Queen St. West
T o r o n t o , 0 n t . M 5 V 1 2 1
(416)549-0262
Telex 0622 634

PEHTSC

C O M P U T E !

CORPOtgHTOn
MICROSYSTEMS DIVISION

PEC

2 0 6 3 0 Nordhoff Street

Chatsworth, California 91311

Bulk Rate

U.S. Postage

PA)D
Permit No. 26306

Los Angeles, CA

