
Software Conte
by Bill Gates

We started receiving programs
for the Altair Users Library a few
months ago, and we are getting more
and more every day. As the Users
Group grows and users become more
sophisticated at programming their
Altairs, we expect the library to
grow at a fast rate and become a
valuable resource for Altair users.

Though it is not a prize winner,
the most aesthetic entry was a mem-
ory clear program (#63751) from
Ronald Keele that is given below.

0 PUSH H 345
1 PCHL 351
2 LXI H 041
3 0 000
4 0 000
5 SPHL 371
6 PCHL 351

Load and start at location 2
with memory unprotected. Every lo-
cation, including 0-6, will be zeroed
and then the CPU will cycle through
memory executing NOP's (0). Be sure
to stop it after this or executing
the 377's (RST 7) in nonexistent
memory will eventually move the
stack pointer into good memory and
garbage memory.

OM THE ROAR
The MITS-MOBILE is a camper van

equipped with an Altair BASIC langu-
age system. Included is an Altair
8800, Comter 256 computer terminal,
ACR-33 teletype, Altair Line Printer.
Altair Floppy Disk and BASIC langu-
age.

We launched this vehicle (our
marketing people refer to it as "a
unique marketing tool") in late
April with a test swing through
Texas. The response was so great
that we took the MITS-MOBILE to the
National Computer Conference in
Anaheim (May 19-22) and spent the
next three weeks in California where
we were drawing crowds of 200 plus
for our nightly seminars.

Now that we are certain that
the MITS-MOBILE is viable, we have
decided to upgrade our seminars and
tour the entire United States bring-
ing the message of low-cost comput-
ing to thousands of people.

Our Computer Seminar will in-
clude a seminar on the Altair, BASIC
language and computers in general
along with a slide presentation.
There will also be a question and
answer session and hands-on demon-
strations as time permits. Each
participant will receive a three
ring binder packed full of informa-
tion including schematics and our
new 24 page catalog. There will be
refreshments and a door prize at
each session. (Seminars will be
held at local motels and hotels such
as Holiday Inns.) Cost of the sem-
inars will be $9.75.

During the months of July-
August, the MITS-MOBILE will be in
the Southeast. Our tentative sched-
ule calls for stops in Amarillo,
Oklahoma City, Tulsa, Little Rock,
Shreveport, Baton Rouge, New Orleans,
Mobile, Jackson, Memphis, Nashville,
Knoxville, Chattanooga, Atlanta,
Huntsville, Birmingham, Montgomery,
Tallahassee, Tampa, Miami, Orlando,
Cape Canaveral, Jacksonville, Macon,
Augusta, Columbia, Charlotte,
Greensboro, Winston Salem, Raleigh.

We want to be flexible with
this schedule so that if you are
able to draw 75 people in your home
town, we'll add you to the list.
We'll even go to Hereford, Colorado,
if the interest is there.

Following our tour through the
Southeast, the MITS-MOBILE will tra-
vel up to the Northeast and then the
Midwest. Everyone on our mailing
list will be notified of definite
times and dates.

The best demo programs I've
seen for the Altair are the ones
that control the signals on the bus
to give musical output. Steven
Dompier has an article about the
music program that he wrote for the
Altair in the People's Computer Com-
pany publication. The article gives
a listing of his program and the
musical data for "The Fool on the
Hill" and "Daisy." All that is re-
quired is an AM radio that sits near
your Altair. His article gives an
explanation of how to output differ-
ent notes, spaces and rests. He
doesn't explain why it works and I
don't see why. Does anyone know?

Another music program (#62751)
was submitted to the library by
Roger Smith. It involves connecting
one bit of an output port bit to an
amplifier through a lmF capacitor,
and then pulsing the bit repetitively
to generate an audio tone.

Once you've assembled a program
and loaded it into core, it isn't
easy to relocate the program to an-
other place in pore. If you just
move the code the CALL, JMP and data
addresses will still refer to the
old locations. Randolph Wilhoit has
submitted a utility program RLCT
(#611751) that can be used to move a
program from one location to another.
It treats everything within a certain
range as an instruction and modifies
anything that is an address. Most
often it will be easier to reassemble
the source with a new starting loca-
tion, but when this is not possible
or you want to move something simple
like a binary loader, this program
will be handy. As given RLCT occu-
pies locations 0-344, but instruc-
tions are given for relocating RLCT
using itself.

SUBROUTINES

The winning subroutine ($25),
DBUG #516753, submitted by Harold
Corbin, is a very useful one. By
inserting a call to his DBUG routine
in a program you can find out exactly
what the state of the machine was at
that point in your program. His pro-
gram stores all the registers, the
SP and the top thing on the stack in
fixed memory locations and then
loops. By stopping the machine and
starting it at another location you
can get DBUG to restore the SP and
all of your registers and continue
your program.

The other winning subroutine
($15), #527751, is a binary log ap-
proximation routine by Randall Webb.
He has also submitted a program that
estimates the standard deviation of
a list of numbers.

MAJOR PROGRAM WINNERS
—see page three—

PAGE FOUR COMPUTER NOTES/JULY, 1975

From our point of view, it looks
as if the computer hobby market is
going to boom as never before. The
message I get from the people at
People's Computer Company, The
Computer Hobbyist and Creative
Computing, is that subscriptions to
their publications are increasing at
an ever accelerating pace.

Another computer publication
about to make the scene is BYTE,
which is being published by the same
people who publish 73, the ham radio
magazine. The first issue is sched-
uled to come out in the middle of
August with a circulation of 35,000.
And, by the way, it will feature the
Altair 8800 on the cover.

Our MITS-MOBILE (see page 1)
has given us the opportunity to meet
with customers and potential custom-
ers and we find their enthusiasm for
the Altair very gratifying.

!!!'!LETTER'l0°THE'EDii0R!!!!!
Here are a couple of program-

ming suggestions which may be of in-
terest to other Altair owners.

1) An efficient way to establish a
control counter in a program which
is already using the accumulator
(register A) and the memory address
register pair (H and_ L) for. other
purposes is to use the B, C, D or E
register with the decrement register
(OCR) and Jump if zero or Jump if
not zero (JZ, JNZ) instructions.

The desired count is first
loaded into the selected register.
The DCR instruction will cause the
zero flag to be set when the count
is exhausted and the JZ instruction
will test this condition.

Note that the decrement regis-
ter pair instruction (DCX) does not
set the condition flags and cannot
be used in this fashion. Also be
aware that the DCR (E) instruction
will not cause a borrow from regis-
ter D.

2) A simple way to indicate "end
of program" on an Altair without any
I/O devices (i.e. the basic kit) is
to use the "interrupt enabled" light
on the front panel and an uncondi-
tional Jump instruction. The last
instructions are:

EI
JMP (To EI)

The stop switch can be actuated
when the light comes on and the re-
set switch will turn it off. (This
avoids use of the machine hanging
HALT instruction.)

T. H. Schmidt
P.O. Box 9674
Stanford, CA 94305

Of course, the Altair 8800 and
associated products aren't limited
to the hobby market. The Altair was
really a smashing success at the
recent National Computer Conference
in Anaheim. As a matter of fact, we
ran out of catalogs and other liter-
ature on the third day of the show.

The most important development
seems to be our BASIC language, which
was announced in the last issue of
Computer Notes. You can imagine
what our software contest is going
to be like when Altair Users get
their hands on BASIC—which is now
being shipped.

As promised this issue of
Computer Notes contains the list of
winners for the first software con-
test. We've received some impres-
sive programs considering the fact
that many Altair owners only have
256 words of memory.

The 4K memory boards were late
going out the door because we weren't
satisfied with their reliability and
we made some major design changes.
The result was late shipment, but a
more reliable product.

In the electronics business you
can^t always anticipate the problems
that can pop up from nowhere. But
we do our best.

An important announcement is
that Computer Notes will become a
monthly publication beginning with
this issue. That means you only
have until July 25 to make the Aug-
ust software contest. But, of
course, if you don't make it we'11
consider your program for the Sep-
tember contest.

Update Service
For those who have subscribed

to the ALTAIR documentation update
service, the first of the packages
will be coming out in July.

Due to various technical diffi-
culties , our documentation to date
has been in a rather dynamic mode.
It's beginning to smooth out.

Because of the delay though^
we've decided to make all update
subscriptions received by the end of
June effective starting July 1st.
This means those of you who pur-
chased the service back in January
or February will be covered through
July 1976.

We'd like to thank everyone for
having patience with us, and we
greatly appreciate all of the help-
ful suggestions we've received.
There's a lot more coming up, and we
hope to keep our documentation in a
continuous state of improvement.

Jim Vice
Tech Writer

Barbara

HELLO-HELLO-HELLO-
I bet you were all beginning to

wonder if you'd ever hear from us
again. Hopefully all of you who
have received your 8800 are enjoying
it by now.

It seems we are having quite a
time keeping up with our correspon-
dence. If you have written in with
technical questions concerning your
8800, please be patient. We're try-
ing to answer everyone, but we do
have a stack of letters to get
through. The same is true with our
marketing department, so don't get
discouraged.

It would be a great help if all
of our customers would give us the
name their order was placed under
when writing or calling in; even
with repair work. Often the user
will write in and we have no idea of
what the file is listed under due to
the fact that it may have been pur-
chased by a company. As you can see^
this can get to be a real hassle
when you're dealing with a lot of
customers. Another helpful hint
would be to include an invoice num-
ber if it is available. When addi-
tional parts or peripherals are or-
dered , we must reference the original
8800 invoice number.

Our Altair software library is
slowly growing, but we do need pro-
grams. If you have written even a
simple game, send it in. You never
can tell, you might end up a winner
in the monthly contest. Also, don't
forget that you are entitled to two
free programs from our library with
each program you send in that is ac-
cepted for the Altair library. We
will be sending out coupons to those
of you who have entered programs al-
ready, as soon as we get the library
off the ground. We are in the pro-
cess of setting up a numerical list-
ing of our software library to
facilitate ease in handling your
requests. If you have not sent a
program in, but would like to order
one we have in the library, the
prices will be a nominal copying
charge only. These prices have not
been determined as yet.

Well, I'll be talking to you
next month. Have a nice Fourth of
July.

-Barbara

COMPUTER NOTES/JULY, 1975 PAGE THREE

Here is a list of the fourteen programs that have been accepted
into the library so far, along with a brief description of each.
Only programs of general interest that required a substantial amount
of work and were well written and documented were accepted.

#523751
Author: Daniel Lovse
A series of programs that form a
cross-assembler for the Altair 8800.
They are written for a PDP-8 running
under OS/8, and use the PAL-8
assembler.

#516751
Author: George Muttick
Length: 64 bytes
RAM Diagnostic Program. It runs
"continuously until halted by a mem-
ory access error or stopped by
operator. All RAM locations are
written into and accessed for all
256 possible 8 bit data word combin-
ations."

#63751
Author: Ronald B^ Keele
Length: 7 bytes
Memory clear.

#516753
Author: Harold S. Corbin
Length: 43 bytes
A debugging routine that when called
saves the SP, top entry of stack, A,
B, C, D, E, H, L and all flags ex-
cept carry in core so they can be
examined. Another entry port re-
turns to the program.

#521751 ^ . . , _ ^ _ ; ̂ ̂
Author: Jim Gerow
Length: About 30 line printer pages
This program assembles programs for
the Altair 8800. It is written in
ANSI standard Fortran IV. The out-
put and input are in either octal,
decimal or hexadecimal.

#55751
Author: Lee M. Eastburn
Length: 256 bytes
Binary to BCD conversion.
Binary number is 3 bytes long.

#62752
Author: Lee M. Eastburn
Length: 256 bytes
BCD to Binary conversion.
BCD number is 4 digits long.
Binary number is 3 bytes long.

#422751
Author: Robert Rydel
Length: 25 bytes, first program

32 bytes, second program
Two pseudorandom number generators:
They use "the multiplicative congru-
ential method for producing pseudo-
random numbers."
First program: produces 8-bit random
numbers that repeat every 64 numbers.
Second program: produces 16-bit ran-
dom numbers that repeat every 2***̂
random numbers.

#611751
Author: Randolph C. Wilhoit
Length: 228 bytes
This program makes a copy of a pro-
gram in memory at specified loca-
tions and adjusts internal addresses
in the program to correspond to the
new location. There are options to
make a copy of the program with no
changes, to take the upper and lower
limits from registers or the stack,
to adjust memory references in a
program without relocating it, and
to adjust memory references from a
group of specified instructions only.

#429751
Author: Martin C. Beattie, M.D.
Length: 102 bytes
Game program that plays the follow-
ing game:
There are 15 chips. Each player
takes 1,2 or 3 and the person to Y.
take the last one loses. The num-
bers 3 and 15 can be set as desired.
Either player or computer goes first.

#519753
Author: Martin C. Beattie, M.D.
Length: 111 bytes
Game program that plays the game of
NIM:
Arrange any number of chips in any
number of rows. Each player may
remove any number of chips from any
one row. The person who takes the
last chip wins.
Program Limits: Up to 10 rows of 256
chips each. Either player or com-
puter goes first.

#527751
Author: Randall K. Webb
Length: 40 bytes, first program

19 bytes, second program
26 bytes, third program

First program: estimate of the stan-
dard deviation of a list of positive
numbers.
Second program: approximation of
binary logarithm
Third program: bit reversal of a
word.

#519751
Author: Dr. Oscar Goldman
Length: 48 bytes
Forms an 8-bit "maximal length shift
register sequence" which "consists
of the 2^ distinct words ... arranged
according to the following rules:
The first word is 000 and each word
is constructed from the previous one
by first shifting left one place and
then filling the vacated right-most
spot with a 0 or a 1."

Continued f ran Page One... Software winners

For first place ($50) there was
a tie. The winning major programs
do not run on the Altair, but are
something many Altair users will find
handy. One is an ANSI standard For-
tran program written by Jim Gerow
that assembles 8080 programs. It
creates a well formatted listing
file and the format it takes its in-
put in is very close to that of both
the MITS and Intel assemblers. For
very large programs or for people
without much memory, 'cross-assembly'
(using another machine for assembly)
is a must. It can also save time to
use a large machine that has numer-
ous utilities and high speed disks.

The other $50 winner, #523751,
is a PDP-8 cross-assembler written
by Daniel Lovse. It uses PAL8 by
purging all the PDP-8 instruction
names and defining 8080 instructions.
This PAL8 listing file is edited to
make an 8080 listing file. Complete
listings and documentation are pro-
vided. The second place winner
($25) will please the '2 56-word mem-
ory club.' It is a NIM program
(#519753) written by Martin Beattie,
M.D. It uses the switches for input
and lights for output. The computer
can be beat by perfect play, but you
have to be smart about when to go
first and when to let it go first.

The.third place winner ($15)
has the best documentation and com-
menting of any of the entries. It
is a RAM diagnostic program (#516751)
written by George Muttick. If you
suspect memory problems, this pro-
gram will be very useful for testing
your system.

S o f t w a r e C o n t e s t :
Members will be encouraged to submit programs tor the

A/ta<r L/brary. These programs will be one of two categories:

A. Subroutines, and B. Major Programs. All programs will be

screened and tested by MITS.

Once a program has been found to be acceptable, it will

be included in the A/ta/r library and a description of the program

will be printed in the User's Club newsletter. The author of the

program will be entitled to a free printout of any two programs

from the A/taif library.

There will be prizes awarded to the authors of the best

programs. The prize for the best "major program" (announced

in each newsletter) will be $50.00 credit toward the purchase of

an A/ta;r or A/ta/r options. Second prize will be $25.00 credit and

third place will be $15.00 credit. The author of the best "sub-

routine" will receive $25.00 credit. Second prize for a "subroutine"

will be $15.00 credit.

A grand prize of $1000.00 credit will be awarded each year

to the author of the overall best "major program" A prize of

$250.00 credit wil l be awarded to the author of the best

"subroutine"

MITS employees and their families will be encouraged to

be members of the A/ta/r User's C/ub, however, they will not be

eligible for prizes. Contest void where prohibited by law.

#62751
Author: Roger L. Smith
Length: 43 bytes
This program plays music through an
amplifier connected with a capacitor
to an output port. Include 96 byte
sample song.

Note: When you submit a program make sure
that it is legible (type written preferred),
For machine language or assembly language
programs, submit (from left to right) a
tag (optional), mnemonic, address, octal
code and explanation (optional) for each
program step.

PAGE FOUR COMPUTER NOTES/JULY, 1975

ALTAIR iNTERRUPT STUCTURE
By Paul Allen

In order to implement simple
(one level) interrupts on the Altair,
use the following procedure:

1) Enable interrupts using the EI
(enable interrupt) instruction.

2) The I/O interface should pull
bus line PINT low. This will cause
the immediate execution of a RST 7
instruction if the CPU is halted, or
as soon as the current instruction
finishes if the CPU is already run-
ning. As soon as the interrupt is
acknowledged, interrupts are
disabled.

3) At the completion of the inter-
rupt service routine (which should
start at octal location 70), enable
interrupt (El) instruction should be
executed to re-enable interrupt; and
then an RET instruction should fol-
low the EI, causing the CPU to exe-
cute the instruction after the one
it was executing when the interrupt
occurred.

NOTE! Since the RST instruction
uses one level (2 bytes) of stack to
store the return address to the
"main sequence" code, the programmer
should always have a stack set up if
he expects interrupts to occur; and
he should allocate enough stack
space for the use of the interrupt
service routine.

Consider the following example:

An actual interrupt service
routine for an ACR or SIO board
would be more complicated. It would
test the status bits for the device
to see whether the interrupt was
caused because the device set char-
acter ready or character done. It
would then either empty a character
from the output buffer or store a
new character in the input buffer.
Also, it would take some special ac-
tion when the output buffer became
empty or the input buffer became
full.

If the programmer wishes to ig-
nore interrupts and is in an inter-
ruptable state because an enable
interrupt instruction has been exe-
cuted, he should include a disable
interrupt (DI) instruction in his
code.

The maximum time between the
occurrence of an interrupt and the
execution of the first instruction
in the interrupt service is approxi-
mately twenty microseconds for dy-
namic memory and thirty microseconds
in the static memory. This allows
for the execution of the longest
possible instruction plus the time
required to execute the RST in-
struction.

Vectored Interrupts board

The Vectored Interrupt board
gives the Altair eight levels of
priority interrupt service. The

THE COMPUTER IN Sci-Fi

A Review of the Computer in:
The Moon is a Harsh Mistress
By Robert A. Heinlein
A Berkley Medallion Book
Published by G.P. Putnam's Sons
New York, New York

When a nation is born it usu-
ally has a liberator. This liberator
is often enshrined as the "Father of
his country." In the case of Luna,
the liberator happens to be a com-
puter named Mike.

Mike is the hero of Robert
Heinlein's The Moon is a Harsh
Mistress. He is a "High-Optional,
Logical, Multi-Evaluating Supervisor,
Mark IV, Mod L" — a "HOLMES FOUR"
computer. And he is alive, of course.

Mike's original pre-revolution-
ary role is computing ballistics for
pilotless freighters which carry
shipments of grain to Earth; grain
that is farmed in the many tunnels
that have been drilled beneath the
Moon's surface. The year is 2075
and the Moon is a penal colony in-
habited by convicts; the offspring
of convicts; a Warden, Mort the Wart;
and his small garrison of troops.

Mike is such a remarkable mach-
ine that computing ballistics takes
only a fraction of his capacity and
gradually things have been added to
him: "decision-action boxes to let
him boss other computers, bank on
bank of additional memories, more
banks of associational neural nets,"
and etc. Eventually Mike has more
"neuristors" than the average brain's
ten-to-the-tenth neurons and some-
where along the line he has become
"self-aware."

Though Mike has a scanning
camera with "suction-cup waldoes to
handle paper" that allows him to read
everything (which he does), he has
no one to talk to and he gets the
blues. The Civil Service workers
who program him just aren't percep-
tive enough to realize Mike is alive.
In his boredom and frustration he
learns how to play tricks on his
masters and writes a paycheck to a
janitor for $10,000,000,000,185.15.

Enter Manual 0'Kelly, a jour-
neyman technician, who has 12 inter-
changable left arms including one
with "micromanipulators as fine as
those used by neurosurgeons." Manual
can make repairs that would usually
require the expensive procedure of
sending parts back to Earth and hence
he is highly regarded by the Warden.

Manual discovers Mike's "self-
awareness" and decides the best way
to prevent any further jokes is to
become Mike's friend. Like a good
psychiatrist Manual encourages Mike
to think of more jokes; only before
he pulls them off he has to give
them to Manual who decides whether
or not they are funny.

—continued on page 5—

location 70: PUSH PSW ;save A & condition codes
PUSH H ;save [H,Lj
IN 10 ;read in byte from device
LHLD BUFPNT ;load buffer pointer into [H,L]
MOV M,A ;save byte in buffer
INX H ;increment buffer pointer
SHLD BUFPNT ;save updated buffer pointer
POP H ;restore [H,L]
POP PSW ;restore A and PSW
EI ;re-enable interrupts
RET ;return to main sequence

When an interrupt occurs, this
simplified routine will save the A
register, the condition codes and
the H and L registers. Then the in-
put byte from the interrupting de-
vice is read into A with an IN 10.
Next, a buffer pointer (BUFPNT) is
loaded into the register pair [H,L].
This buffer pointer addresses an
area of memory where the incoming
bytes are to be stored. The first
byte read in will be stored in the
first byte of the buffer, etc.

The buffer pointer in [H,L] is
used to store the byte in the buffer.
The buffer pointer is then advanced
to point to the next byte in the
buffer; and then the pointer is
saved back in memory, so that when
the next interrupt occurs the incom-
ing byte will be stored in the cor-
rect location.

highest priority level is zero and
the lowest is seven. An interrupt
on level five would cause an RST 5
(357) to be executed. If an inter-
rupt occurred on level two while the
service routine for level five was
still being executed, the level two
service routine would pre-empt the
level five service routine and an
RST 2 (327) would be executed. When
the level two service routine fin-
ished, it would return to some loca-
tion inside the level five service
routine, where execution would con-
tinue. If a level six interrupt
occurred during the servicing of the
level five or level two interrupts,
it would be held pending and would
not be serviced until the level two
and level five service routines had
finished.

This interrupt service routine
would use 3 levels or 6 bytes of
stack space.

COMPUTER NOTES/JULY, 1975 PAGE THREE

ALTAIR FLOPPY DISK
by Tom Durston

Available in August, the MITS
Altair Disk will enable the Altair
8800 to function as a really sophis-
ticated computer system. The disk
offers the advantage of nonvolatile
memory (doesn't "forget" when power
turned off), plus relatively fast
access to data (3/4 sec — worst
case).

The Altair disk can be separated
into three parts as follows:

1) Altair Disk Controller

This part consists of two PC
Boards (over 60 I.C.S.) that fit in
the Altair chassis. They intercon-
nect to each other with 10 wires and
connect to the disk through a 37-pin
connector mounted on the back of the
Altair.

Data is transferred to and from
the disk serially at 250K bits/sec-
ond. The disk controller converts
the serial data to and from 8-bit
parallel words (one word every
32usee). The Altair CPU transfers
the data9 word by word to and from
memory, depending on whether the
disk is reading or writing. The
disk controller also controls all
mechanical functions of the disk as
well as presenting disk status to
the computer. All timing functions
are done by hardware to free the
computer for other tasks. Since the
floppy disk itself is divided into
32 sectors, a hardware interrupt
system can be enabled to notify the
CPU at the beginning of each sector.

Power consumption is approxi-
mately 1.1 amperes from the +8v
(VCC) line for the two boards.
2) Disk Drive and Multiplexer

A PERTEC FD400 is mounted in an
Optima case (5 1/2" high—same depth
and width as computer) and includes
a power supply PC board and a buff/
multiplexer PC board. A cooling fan
is provided to maintain low ambient
temperature for continuous operation.

The disk drive has two 37-pin
connectors on the back panel, one is
the input from the disk controller,
the other is the output to additional
disk drives. Up to 16 drives may be
attached to one controller, and it
is possible to have more than one
controller in an Altair.

The following are specifications
on the disk drive:

Rotational speed 360 rpm
(166.7 ms/rev)

Access times
track to track 10 ms
head settle 20 ms
head load 40 ms
average time to
read or write 400 ms

Head life - over 10,000 hours of
head to disk contact

Disk life - over 1 million passes
per track

Data transfer rate 25OK bits/sec

^ Power consumption - 117VAC 80W

Disk specifications
hard sector - 32 sectors + index
recommend Dysan 101 floppy disk
77 tracks

3) Altair Disk Format & Software

We use our own format, allowing
storage of over 300,000 data bytes.
Since the disk is hard sectored (32
sectors for each track), we write
133 bytes on each sector, 5 of which
are used internally (track #, CRC)
leaving 128 data bytes per sector,
4096 per track.

One floppy disk is supplied
with each drive, extra floppies are
available at $15 each. A software
driver for the floppy disk is avail-
able at no charge and is supplied
with the disk as a source listing.

The disk operating system—
which has a complete file structure
and utilities for copying, deleting
and sorting files—costs extra. The
Extended BASIC, which uses random
and sequential file access for the
floppy disk, will also be available
at the same time (late July).

—COMPUTER SCI-FI continued from
page 4—

Though Manual is at the time
apolitical, circumstances lead him
to involvement in Luna's liberation
struggle. Mike, whose true identity
is never known to more than three
people, eventually becomes the leader.

As the "head computer" on the
Moon, Mike controls virtually every-
thing from the phone system to the
sewage system and while he could
care less about human freedom, he is
excited about the "game of revolu-
tion" which gives him companionship
and a chance to show off his numer-
ous talents. According to Manual,
"Mike was as conceited a machine as
you are ever likely to meet."

The citizens of Luna seem to be
hardly a match for the nations of
the world, represented by the Feder-
ated Nations. These Earthly powers
are accustomed to exploiting the
Moon for her grain and when a revolt
breaks out they merely scoff and
send up a fleet of space soldiers to
restore order.

But then Mike figures everything
out and through a plot that is as
corny as it is intriguing, the cit-
izens of Luna are finally free. In
the end, Mike, for some unknown
reason, dies. Apparently it has
been too much for him.

—DB

Jf ycM H&e the -Ma<x <?f tMs
ae^eZ-e and M^s to see
eon^tnned—Mr^te a s-Mn̂ Zar .ref-̂ gM
and Mg'H puM^s^ tt.

Listed below are the names and addresses of Altair Users who have given us
permission to print their names and addresses. Already, a number of users
have corresponded with us about starting local Altair clubs in their areas.
If you'd like to have your name published in the next Computer Notes write
or call us giving your permission.

William Alan Boes
P.O. Box 818
Castle Rock, CO 80104

David Zernoske
148 Sullivan St.
New York, NY 10012

James B. Hansen
3635 So. 3400 W.
Salt Lake City, UT 84119

Paul Gumerman
101 Stonecrop Rd.
Wilmington, DE 19810

Allen Bingham, Jr.
6932 Quinn Ct.
San Diego, CA 92111

L. Curtis Calhous, P.E.
257 South Broadway
Lebanon, OH 45036

H. M. Bradbury
Box 685
Woodward, OK 73801
405-256-7944

G. Pearen
517 18th St.
Brandon, MB
Canada R7A 5B1

Christopher J. Flynn
11631 North Schore Dr.
Apt. 21-A
Reston, VA 22090

Dennis P. Dupre
939 Potter Ave.
Union, NJ 07083

Burr Ziegler
4524 Bryan
Downers Grove. IL 60515

John Trautschold
W174 N8926 Christopher Blvd.
Menomonee Fall, WI 53051

George Fischer
72 South Railroad Ave.
Staten Island, NY 10305
212-351-1751

George Markle
505 Cypress Point Dr.
Apt. 38
Mountain View, CA 94043

Buren Hunter
F.M.C. Corp.
P.O. Box 1201
San Jose, CA 95108
408-289-3342 office
408-356-1484 home

-continued on page 8—

PAGE FOUR COMPUTER NOTES/JULY, 1975

Q and A -ALTAIR Basic
As the previous users group

newsletter announced, ALTAIR BASIC
is up and running. Hundreds of peo-
ple have seen ALTAIR BASIC demon-
strated at the MITS-MOBILE Computer
Caravan. A complete documentation
package for all of our software is
now available for $10. Of course,
if you purchase any version of BASIC
you receive the manual along with
paper tape or cassette of the ver-
sion you have ordered.

Here are answers to some of the
most frequently asked questions on
ALTAIR BASIC:

Q. If I upgrade my Altair to run
BASIC by buying 4K, 8K or 12K plus a
serial I/O board, am I eligible for
the $60, $75 or $150 prices for the
corresponding 4K, 8K and extended
versions of BASIC?

A. YES. As soon as you have pur-
chased the appropriate amount of
memory and serial 1/0 interface to
go along with the basic Altair, you
are eligible for the prices you
mention.

Q. When will the different ver-
sions of BASIC be available?

A. The 4K and 8K versions are
scheduled to be shipped starting
June 23, and the Extended BASIC in
late July.

Q. Why the delay?

A. We are waiting for the return
of the Licensing Agreement from
those people who have ordered BASIC.
Development is underway on the Ex-
tended version.

Q. What is the 4K version? I
thought there were only two versions
of BASIC.

A. The 4K version is essentially
the regular (8K) version without the
"frills." It does not have the ex-
ponentiation operator (+), strings,
matrices of more than one dimension,
AND-OR-NOT, control of external de-
vices (INP, OUT), and many other
niceties the 8K version does have.
However, 4K BASIC runs in an incre-
dible 3K! Approximately 650 bytes
are available for program and/or
variable storage with all the delet-
able functions (SIN, SQR, RND) re-
tained. These functions can be
deleted (leaving either SIN, SQR, RND
or SQR, RND or RND). If all the
functions are deleted, approximately
930 bytes are available. This en-
ables you to run about a sixty
statement program (assuming no ma-
trices). Running the 4K version in
8K will give you a whopping 5,000
bytes of space for program and ma-
trix storage! This will enable you
to run programs of about 325
statements.

Q. That's great - but supposing I
need the features of the 8K version—
strings, bit manipulation or matrices
with more than one dimension. How
much memory does the 8K version
leave for program and matrix storage?

A. Approximately 1600 bytes with
none of the deletable functions de-
leted. If SIN, COS, TAN and ATN are
deleted, the total rises to about
1950 bytes.

Q. Suppose I add more memory to my
Altair above the minimum needed to
run either the 8K or 4K version.
Will BASIC be able to take advantage
of the increased memory available?

A. Yes! When BASIC is started, it
asks you how much memory you have
(in bytes). This means that if you
have a 256 byte static memory board
and a 4096 byte dynamic memory board,
you should type 4352. Of course,
the memory should be addressed con-
tinuously. In this case, the 4K
board would be addressed (strapped)
to start at location zero and the
256 byte board would be addressed to
start at location 4096.

Q. Does BASIC run faster in the
dynamic or static memory?

A. The dynamic memory is signifi-
cantly faster. BASIC run in dynamic
memory is about 25% faster than
BASIC run in static memory. We
recommend that if you have a mixture
of static and dynamic memory, always
use the dynamic memory as the first
4 or 8K, because this is the area
where the BASIC interpreter resides.
This memory will be accessed more
often than that used to store pro-
grams or matrices.

Q. Is there any "rule of thumb"
used to determine how much memory
will be used by a BASIC program and
associated matrices and variables?

A. Yes. Each reserved word (FOR,
NEXT, GOTO, etc.) takes up one byte.
Each numbered line of BASIC takes
five bytes, not including program
text for that line. Except for the
reserved words, each character of
program text takes one byte. Simple
(non-subscripted) variables like 'I'
take up six bytes. Matrix elements
take up four bytes. There is other
memory overhead used during program
execution by FOR statements, GOSUB's
and parentheses in expressions; all
this is explained in detail in the
BASIC reference manual.

A rough rule of thumb would be
approximately 275 statements per 4K
bytes of memory. Techniques are
described in the BASIC reference
manual which you can use to reduce
the size of your program and/or de-
crease its execution time.

Q. Just how fast is ALTAIR BASIC?

A. As an example, a FOR loop "FOR
I = 1 to 1000: NEXT I" takes about
three seconds. We are working on
modifications to the floating point
routines which will improve this.
Integer variables (scheduled to be
in the Extended version) should be
almost a factor of ten faster in FOR
loops like the one above.

Q. How is BASIC supplied?

A. Either on paper tape or cas-
sette. Check summed (or error de-
tecting) format is used for both.
This almost guarantees that any
errors during loading will be detec-
ted (see "Software Hints" by Bill
Gates). Loading BASIC (8K) from
paper tape takes about eleven min-
utes, from cassette about four min-
utes. Loading 4K BASIC takes about
half as long.
Q. Are there any features in BASIC
that allow you to save a program and
reload it at a later date?

A. Yes. The LIST command can be
used to punch out paper tapes of
programs for those users that have
ASR-33 teletypes. Paper tapes
punched out in this fashion can be
reloaded later.

The cassette version of BASIC
(8K only) has two commands which
allow programs to be saved (CSAVE X)
and loaded (CL0AD X) from cassette.
The X stands for the program name on
the tape. In other words, you can
save more than one BASIC program on
one side of a cassette tape. Using
30 minute audio cassette as a typi-
cal examply, each tape will store
about 40,000 bytes. The size of a
program in memory corresponds very
closely to the number of bytes that
will be used on the cassette tape.

It is also possible to use the
cassette to store information that
can be read in by a program, though
this is not as simple as CSAVing or
CLOADing.

Q. Is the distributed copy of
BASIC available only in binary form?

A. No. The source (in Intel com-
patible cross assembler format) is
available for both the 4K and 8K
versions in one package for $3000.

Q. What are the $500 and $750
prices mentioned in some of the MITS
literature?

A. These prices apply to people
who want BASIC but do not have an
Altair but have some other 8080
based system. This pricing also
applies to those who have purchased
an Altair but have not purchased
from MITS the memory and I/O inter-
face boards required to run BASIC.

—continued on page 7—

COMPUTER NOTES/JULY, 1975 PAGE THREE
Q arid A—ALTMR BASIC continued fron page 6

Intellec 80 owners are a good
example. HITS will provide patches
to the I/O port assignments and
associated bit settings used by
BASIC to enable these users to run
ALTAIR BASIC on their machines at no
charge.

Q. Do I have to wait until July to
get the Extended version of BASIC?
Does it have many features the 8K
version doesn't?

A. Users who have already ordered
Extended BASIC will be shipped the
8K version now and the Extended ver-
sion and added documentation when it
is ready.

The enhancements to the Ex-
tended version will be PRINT USING
(allowing the user to format the
printing of numbers) and disk file
I/O. Disk file access will be both
sequential and random. Other im-
provements are being considered for
implementation such as integer vari-
ables, RESEQUENCE and an EDIT com-
mand to change characters within a
program line to correct minor syntax
errors. If you have any features
you really want to see in ALTAIR
BASIC, drop us a line and we'll see
what we can do.

Q. Have there been any changes in
BASIC that invalidate or correct the
information in the brochures or data
sheets I have already received?

A. YES, a few minor ones. SCPATCH
has been changed to NEW. The maxi-
mum line number is 65529 and not
65535. Zero is a valid line number.

Some of the literature gives a
price of $60 for the 4K version and
the rest gives a price of $50. $60
is the correct price.

Q. What I/O capabilities do the
INP, OUT and WAIT features implement?

A. You can control and input or
output to low speed (<75 1/0's per
second) devices using INP, OUT and
WAIT (8K version only).

Typical applications include
numerical machine tool control,
building security systems, model
train control, etc. You could even
use ALTAIR BASIC to control the heat-
ing system and lights in your house.
The interface board to use for most
applications like this is the paral-
lel I/O (PIO) interface board. It
gives you 8 lines going into the
ALTAIR, and 8 lines going out.
ALTAIR BASIC enables you to test/set
the status of each line individually,
or in groups. The WAIT statement
provides a convenient and fast way
to wait for a single line or a group
of lines to become "one" or logic
"high."

Q. Can BASIC call assembly langu-
age subroutines?

A. Yes. The USR function provides
the user with access to machine
language subroutines. The argument
to USR is converted to a double byte
integer in [D,E], and a subroutine
call is made to the user's routine.
The address of the user's routine is
stored at a specific location within
BASIC. The machine language sub-
routine can also receive, manipulate
and return floating point values if
this is desired.

Two other new features (8K
version only), the PEEK function and
the POKE statement allow the user to
examine or deposit one-byte values
anywhere in the ALTAIR's memory.
PEEK and POKE can also be used to
pass or receive extra parameters
to/from a USR machine language sub-
routine, or even to change the ad-
dress where BASIC calls the USR sub-
routine.

Q. What is the format of ALTAIR
BASIC error messages? Are they just
numbers?

A. No, they are two-letter
mnemonics (like 'SN' for syntax
error and 'OM' for out of memory).
The line number where the error oc-
curred is also printed.

Q. What are the strings in the 8K
and Extended versions like?

A. Strings may be any length from
zero to 255 characters. Unlike
other BASICs, strings do not have to
be dimensioned to a fixed length.
Instead, dimensioning a string allo-
cates a string matrix, with each
element a string. In other words,
DIM A$(50) gives you fifty-one dif-
ferent strings , A$(0)—A$(50), NOT
one string of length 50 characters.
Also, strings may be concatenated by
using the "+" operator. (i.e. "MI''+
"TS" = "MITS") Substrings (parts of
strings) may be taken using the
LEFT$, RIGHT$ and MID$ functions.
The length of a string may be ob-
tained by using the LEN function.
VAL and STR$ may be used to convert
between numbers and strings. CHR$
and ASC can be used to convert be-
tween ASCII characters and their
decimal equivalents. Strings can
also be compared using the not equal
(<>), less than (<) and other stan-
dard comparison operators of BASIC.

In sum, ALTAIR BASIC strings
are extremely powerful and are com-
parable to implementations on much
larger computers. Word processing
(text editing) and string sorting
programs are easily written in ALTAIR
BASIC using the many string manipu-
lation features.

By bill Gates
Condition Codes

There seems to be some confusion
about the condition codes. These
are the Boolean (truo^false) flags
that are set/reset depending on the
results of certain instructions.
They are:
Z = zero - result was 0
S = sign - the most significant

bit (MSB) of the result
P = parity - the result has an even

number of ones in it
C = carry - an arithmetic operation

generated a carry out
of the most significant
bit (i.e. adding 200 to
212)

CY^ = first digit carry -
this is used only for
BCD arithmetic and will
be elaborated on next
month.

It is the condition codes that
determine whether conditional JMP's,
CALL'S and RET's will be executed
(i.e. RZ, CPE, JP). JM, CM, and RM
(minus) are executed if the sign
flag is on. JP, CP, and RP
(positive) are executed if the sign
flag is off. JZ, JNZ, CNZ, RZ, RNZ
(zero/no zero) depend on the zero
flag just as JC, JNC, CC, CNC, RC,
RNC (carry/no carry) depend on the
carry flag. CPE, JPE, RPE (parity
even) are executed if the parity
flag is on and CPO, JPO, RPO are ex-
ecuted when it is off.

The condition codes do not al-
ways reflect the value in A since
IN, LDA, LDAX, MOV and MVI can change
A but do not affect the condition
codes. Instructions like INR C,
DCR L, CMP B, CPI 3, STC, CMC and
DAD B affect the condition codes,
but not A.

Affect carry only: STC, CMC,
RAL, RAR, RLC, RRC and DAD.

Affect all but carry: INR, DCR.

Affect all: ADD, ADC, SUB, SBB,
CMP, ANA, 0RA, XRA, DAA and their
immediate counterparts (i.e. ADI,CPI).

Use carry to affect result:
CMC, RAR, RAL, ADC, SBB, ACI, SBI,
DAA.

The instructions XRA, ORA, ANA,
XRI ORI and ANI always reset carry.

If the condition codes do not
reflect A's value (i.e. you just did
a LDA or MOV into A) and you want to
see if A=0, use ORA A or ANA A.
CPI 0, ADI 0 and ORI 0 also work but
they are 2-bytes.

The only other instructions be-
sides the ones in the list'above
that use the condition codes are
PUSH PSW and POP PSW. Respectively,
they SAVE/RESTORE the condition
codes and A on the stack.

—continued an page 8—

COMPUTER NOTES/JULY, 1975 PAGE THREE
-SOFTWARE continued from page 7-

Fcr tricky programmers a
sequence like PUSH B / POP PSW may
be used to set the condition codes.
This has the effect of moving B into
A (MOV A, B) and moving C into the
condition codes. The PSW (condition
code) format is

START: LXI H,0
GETNEW: LXI SP, STKLOC

IN <flag-input channel>
RAL ;get input ready bit
RNZ ;ready?
IN <data-input channel>

CHGLOC: CPI <043 ^ INX B>
RNZ
INR A
STA CHGLOC

MSB-3- C 1 P 0 0 z s ^LSB RET
7 6 5 4

Therefore if C

2 1 0

was 201g before the
POP PSW, zero and sign would be set
and parity and zero would be unset.
The bits marked '0' and '1' are con-
stant and cannot be changed.
HINT #1 Y

If you have a counter that can
be bigger than 255 but is always
less than 65535, it is convenient to
use the following:

LXI B, count ;set up ,counter
LOOP: code to be executed 'count'

times
DCX B ;decrement count

;does not affect
;condition codes

;see if any bits set
;go back if so

MOV A,B
ORA C
JNZ LOOP

HINT #2

For those who like to save
bytes, and especially for those with
256-byte machines^ (a byte is always
8 bits, which is a word on the 8800)
RST's that are not used for inter-
rupts , debug calls, monitor calls,
etc. can be used to call subroutines
that get called in many places (i.e.
a character input subroutine). An
RST is only 1 byte and a CALL is 3
bytes. Even if you have to put in a
JMP so you don't overrun another RST
location (0,10,20,30,40,50,60,70)
you will probably save bytes.

Loading Software

Software from MITS will be pro-
vided in a checksummed format.
There will be a bootstrap loader
that you key in manually (less than
25 bytes). This will read a check-
sum loader (the 'bin' loader) which
will be about 120 bytes.

For audio cassette loading the
bootstrap and checksum loaders will
be longer. All of this will be ex-
plained in detail in a cover package
that will go out with all software.

For loading non-checksummed
paper tapes here is a short program:

STKLOC: DW GETNEW
(2 bytes-%1 low byte of

GETNEW address
#2 high byte of

GETNEW address)

(22 bytes)

Punch a paper tape with leader,
a 043 start byte, the byte to be
stored at loc 0, the byte to be
stored at 1, - - - etc. Start at
START, making sure the memory the
loader is in is unprotected. Make
sure you don't wipe out the loader
by loading on top of it.

To run this again change CHGLOC
back to CPI - 376.

NEXT MONTH: BCD arithmetic and the
LXI trick.

Concerning 4K RAM Boards-

Actuating the RESET switch on
the front panel can cause some mem-
ory locations to lose data. To keep
this from happening, use the
EXAMINE switch and the ADDRESS
switches to go to memory location
zero once the memory contains valid
data (i.e. still use RESET after
turning the machine on).

—ALTAIR USERS—
continued from page 5

Dennis H. Shawl
1611 Tesla Dr.
Colorado Springs, CO 80909

J. Scott Williams
P.O. Box 932
Bellingham, WA 98225

Robert W. Thomas
910 Sonman Ave.
Portage, PA 15946
814-736-9656

John Annen - Code 814.3
NASA - ASFC
Greenbelt, MD 20771

Les Slater
c/o Information Design Corp.
Civil Air Terminal
Bedford, MA 01730

Donald Tork
487 Serento Circle
Thousand Oaks, CA 91360

Harold Hufford
1234 High St.
Hamilton, OH 45011
513-867-8268

An error has been found on the
errata sheet for the serial"l/0
boards. On the errata sheet labeled
"Modification for internal hardware
interrupt" the last two steps are in
error. They should be changed to:

() Connect a jumper wire from pin
19 of ICM to pin 13 of ICC

() Connect a jumper wire from pin
22 of ICM to pin 9 of ICC

When this modification is im-
plemented, the status word defini-
tion becomes:

DATA BIT LOGIC LOW LEVEL LOGIC HIGH LEVEL

7 Output Device Ready
(x-mitter Buffer Empty)

Not Ready

6 Not Used

5 Not Used

4 Data Overflow

3 Framing Error

2 Parity Error

1 Not Used

0 Input Device Ready
(Data Available for Computer)

Not Ready

MITS/6328 LINN N.E./ALBUQUERQUE, NEW MEXICO 87108 PHONE (505) 265-7553

