
^ M I T S , Inc. 1977

Reprinted July, 1977

2450 Alamo S.E. /Aibuquerque. New Mexico 87106

BASIC Reference Manual

Addenda, April, 1977

1. Page 33, sub-paragraph b:

LINE INPUT ["<prompt string>",].; <string variable name>

CHANGE TO:

LINE INPUT ["<prompt string>";] <string variable>

2. Page 40, Paragraph S-3b, line 9:

The of the <integer expression> is the starting address of . . .

CHANGE TO:

The <integer expression> is the starting address of . . .

3. Page 41. Insert the following paragraphs between Paragraphs 3 and 4.

ADDITION:

The string returned by a call to USR with a string argument is that
string the user's routine sets up in the descriptor. Modifying [D,E] does
not affect the returned string. Therefore, the statement:

C$=USR(A$)

results in A$ also being set to the string assigned to C$. To avoid
modifying A$ in this statement, we would use:

C$=USR(A$+" ")

so that the user's routine modifies the descriptor of a string temporary
instead of the descriptor for A$.

A string returned by a user's routine should be completely within
the bounds of the storage area used by the original string. Increasing
a string's length in a user routine is guaranteed to cause problems.

4. Page 49, last paragraph, line 7:

. . . leading $ signs, nor can negative numbers be output unless the sign
is forced to be trailing.

CHANGE TO:

. . . leading $ signs.

BASIC Reference Manual Addenda, April, 1977
Page 2

5. Page 59, last line:

520 CLOSE #1

CHANGE TO:

520 CLOSE 1

6. Page 70, CLEAR [<expression>] explanation:

Same as CLEAR but sets string space to the value . . .

CHANGE TO:

Same as CLEAR but sets string space (see 4-1) to the value . . .

7. Page 70, CLOAD <string expression> explanation, second line:

. . . character of STRING expression> to be . . .

CHANGE TO:

. . . character of <STRING expression> to be . . .

8. Page 71:

CSAVE*<array name> 8K (cassette), Disk

CHANGE TO:

CSAVB*<array name> 8K (cassette), Extended, Disk

9. Page 75. Insert the following after LET and before LPRINT.

ADDITION:

LINE INPUT LINE INPUT "prompt string"; string variable name

Extended, Disk

LINE INPUT prints the prompt string on the terminal and assigns all
input from the end of the prompt string to the carriage return to
the named string variable. No other prompt is printed if the prompt
string is omitted. LINE INPUT may not be edited by Control/A.

10. Page 76, POKE explanation, second line:

. . . If I is negative, address is 65535+1, . . .

CHANGE TO:

. . . If I is negative, address is 65536+1, . . .

BASIC Reference Manual Addenda, April, 1977
Page 3

11. Page 80, 0CT$:

OCT$ OCT$(X) 8K, Extended, Disk

CHANGE TO:

OCT$ OCT$(X) Extended, Disk

12. Page 81:

SPACE$ SPACE$(I) 8K, Extended, Disk

CHANGE TO:

SPACE$ SPACE$(I) Extended, Disk

13. Page 91, line 4:

. . . question (see Appendix E),

CHANGE TO:

. . . question (see Appendix H).

14. Page 95, first paragraph, line 3:

. . . For instructions on loading Disk BASIC, see Appendix E.

CHANGE TO:

. . . For instructions on loading Disk BASIC, see Appendix H.

15. Page 103, line 11:

C (in extended) retains CONSOLE function.

CHANGE TO:

C (in Extended and Disk) retains CONSOLE and all other functions.

16. Page 112, Paragraph 4, Line 3:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 decimal.

CHANGE TO:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 octal.

17. Page 114, third paragraph, line 2.:

. . . by the first character of the STRING expressions

CHANGE TO:

BASIC Reference Manual Addenda, April, 1977
Page 4

. . . by the first character of the <string expressions Note that the
program named A is saved by CSAVE"A".

18. Page 119, last sentence before the NOTE:

File numbers are calculated by multiplying the sector number of the direc-
tory track the file is in by 16 and adding the position of the slot in the
sector (0-8) plus 1.

CHANGE TO:

File numbers are calculated by multiplying the sector number of the direc-
tory track the file is in by 8 and adding the position of the slot in the
sector (0-7) plus 1.

19. Page 122, Step 1, line 3:

. . . location 2=116 octal . . .

CHANGE TO:

. . . location 2=077 octal . . .

20. Page 126, line 6:

COP0,1 FROM 0 TO 1? YCARRIAGE retum> DONE

CHANGE TO:

*COP0,1
FROM 0 TO 1? Y<carriage retum>
DONE *

21. Page 126, lines 13 through 15:

. . . Example: *DAT0 (DAT is equivalent) TRACK? 0SECTOR? 0 000 000 000
000 000 000 000 000 000 000 000 000 000 etc.
CHANGE TO:

*DAT0
TRACK? 0
SECTOR? 0
000 000 000 000 000 000 000 000 000 000 000 000 000 etc.

22. Page 131, line 1 of program:

ORG 7Q1

CHANGE TO:

ORG 71^

BASIC Reference Manual Addenda, April, 1977
Page 5

23. Page 135, Step 7, line 2:

. . . the board type is IOCHNL, . . .

CHANGE TO:

. . . the board address is IOCHNL, . . .

24. Index, line 12:

ADDITION:

NULL 72

U

PREFACE
The Altair BASIC language is a high-level programming

language specifically designed for interactive computing
systems. Its simple English-like instructions are easily
understood and quickly learned and its interactive nature
allows instant feedback of results and diagnostics. Despite
its simplicity, however, Altair BASIC has evolved into a
powerful language with provisions for editing and string
processing as well as numerical computation.

The Altair BASIC interpreter reads the instructions of
the BASIC language and directs the ALTAIR 8800 series
microcomputer to execute them. Altair BASIC includes many
useful diagnostic and editing features in all versions. The
extended versions provide additional features including
comprehensive file input/output procedures in the disk
version.

This manual will explain the features of the BASIC
language and the special provisions of the 4K, 8K, Extended
and Disk Extended Altair BASIC interpreters, release 4.0.
For quick reference, a table of Altair BASIC instructions,
diagnostics and functions are provided in Section 6. A
complete index is at the end of the manual. In addition to
this reference manual, the programmer should have a good
BASIC text book on hand. A list of some suggested texts is
given in Appendix J.

axiuary, 1977 Page 2

CONTENTS

1. Some Introductory Remarks.
1-1 Introduction to this manual

a. conventions
b. definitions

1-2 Modes of Operation
1-3 Formats

a. lines-AUTO and RENUM
b. REMarks
c. error messages

1-4 Editing - elementary provisions
a. single characters
b. lines
c. whole programs

2. Expressions and Statements
2-1 Expressions

a. constants
b. variables

1) names
2) typing

c. arrays - the DIM statement
d. operators and order of precedence
e. logical operations
f. the LET statement

2-2 Branching and Loops
a. branching

1) GOTO
2) IF...THEN...[ELSE]
3) ON...GOTO

b. loops - FOR,NEXT
c. subroutines - GOSUB,RETURN statements
d. memory limitations

2-3 Input/Output, Data Handling
a. INPUT
b. PRINT
c. DATA, READ, RESTORE

1) DATA
2) READ
3) RESTORE

d. CSAVE, CLOAD
e. miscellaneous

1) WAIT
2) PEEK,POKE
3) OUT, INP

3. Functions

January, 1977 Page 3

3-1 Intrinsic Functions
3-2 User-defined Functions - the DEF statement
4. Strings
4-1 String data
4-2 String operations

a. comparisons
b. LET statements
c. input/output

1) INPUT, PRINT
2) DATA,READ

4-3 String Functions
5. Extended Features
5-1 Extended Statements
5-2 Extended Operators
5-3 Extended Functions
5-4 EDIT Command
5-5 PRINT USING Statement
5-6 Disk Operations
6. Tables and Directories
6-1 Commands
6-2 Statements
6-3 Intrinsic Functions
6-4 Special Characters
6-5 Error Messages
6-6 Reserved Words
6-7 Index
Appendices
A. ASCII Character Codes
3. Loading Altair BASIC
C. Speed and Space Hints
D. Mathematical Functions
E. Altair BASIC and Machine Language
F. Using the ACR Interface
G. Converting BASIC Programs Not Written for the Altair Computer
H. Disk Information
I. The PIP Utility Program
J. BASIC Texts
K. Using Altair BASIC on the

Intellec* 8/Mod 80 and MDS Systems
L. Patching Altair BASIC'S I/O Routines
M. Using Disk Altair BASIC: An Example
Index

C

January, 1977 Page 4

SOME INTRODUCTORY REMARKS
1-1 Introduction to this Manual.

a. Conventions. For the sake of simplicity, some
conventions will be followed in discussing the features of
the Altair BASIC language.
1. Words printed in capital letters must be written exactly
as shown. These are mostly names of instructions and
commands.
2. Items enclosed in angle brackets (<>) must be supplied
as explained in the text. Items in square brackets ([]) are
optional. Items in both kinds of brackets, [<W>], for
example, are to be supplied if the optional feature is used.
Items followed by dots (...) may be repeated or deleted as
necessary.
3. Shift/ or Control/ followed by a letter means the
character is typed by holding down the Shift or Control key
and typing the indicated letter.
4. All indicated punctuation must be supplied.

b. Definitions. Some terms which will become
important are as follows:

Alphanumeric character: all letters and numerals taken
together are called alphanumeric characters.

Carriage Return: Refers both to the key on the
terminal which causes the carriage, print head or cursor to
move to the beginning of the next line and to the command
that the carriage return key issues which terminates a BASIC
line.

Command Level: After Altair BASIC prints OK, it is at
the command level. This means it is ready to accept
commands.

Commands and Statements: Instructions in Altair BASIC
are loosely divided into two classes, Commands and
Statements. Commands are instructions normally used only in
direct mode (see Modes of Operation, section 1-2). Some
commands, such as CONT,may only be used in direct mode since
they have no meaning as program statements. Some commands,
such as DELETE, are not normally used as program statements
because they cause a return to command level. But most
commands will find occasional use as program statements.
Statements are instructions that are normally used in
indirect mode. Some statements, such as DEF, may only be
used in indirect mode.

1977 Page 5

Edit: The process of deleting, adding and substituting
lines in a program and that of preparing data for output
according to a predetermined format will both be referred to
as "editing." The particular meaning in use will be clear
from the context.

Integer Expression: An expression whose value is
truncated to an integer. The components of the expression
need not be of integer type.

Reserved Words: Some words are reserved by BASIC for
use as statements and commands. These are called reserved
words and they may not be used in variable or function
names.

Special Characters: some characters appear differently
on different terminals. Some of the most important of these
are the following:

(caret) appears on some terminals as ^ (up-arrow)
^ (tilde) does not appear on some terminals and prints

as a blank
(underline) appears on some terminals as^—-(back-arrow).

String Literal: A string of characters enclosed by
quotation marks (") which is to be input or output exactly
as it appears. The quotation marks are not part of the
string literal, nor may a string literal contain quotation
marks. (""HI, THERE""is not legal.)

Type: While the actual device used to enter
information into the computer differs from system to system,
this manual will use the word "type" to refer to the process
of entry. The user types, the computer prints. Type also
refers to the classifications of numbers and strings.
1-2 Modes of Operation.

Altair BASIC provides for operation of the computer in
two different modes. In the direct mode, the statements or
commands are executed as they are entered into the computer.
Results of arithmetic and logical operations are displayed
and stored for later use, but the instructions themselves
are lost after execution. This mode is useful for debugging
and for using Altair BASIC in a "calculator" mode for quick
computations which do not justify the design and coding of
complete programs.

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines
are entered into memory if they are preceded by a line
number. Execution of the program is initiated by the RUN

January, 1977 Page 6

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines
are entered into memory if they are preceded by a line
number. Execution of the program is initiated by the RUN
commands.

1-3 Formats.

a. Lines. The line is the fundamental unit of an
Altair BASIC program. The format for an Altair BASIC line
is as follows:

nnnnn <BASIC statements :<BASIC statement^..]
Each Altair BASIC line begins with a number. The number
corresponds to the address of the line in memory and
indicates the order in which the statements in the line will
be executed in the program. It also provides for branching
linkages and for editing. Line numbers must be in the range
0 to 65529. A good programming practice is to use an
increment of 5 or 10 between successive line numbers to
allow for insertions.

1) Line numbers may be generated automatically in the
Extended and Disk versions of Altair BASIC by use of the
AUTO and RENUM commands. The AUTO command provides for
automatic insertion of line numbers when entering program
lines. The format of the AUTO command is as follows:

AUTO[<initial line>[,[<increment>]]
Example;

AUTO 100,10
100 INPUT X,Y
110 PRINT SQR(X*2+Y*2)
120 "C
OK

AUTO will number every input line until Control/C is typed.
If the Cinitial line> is omitted, it is assumed to be 10 and
an increment of 10 is assumed if <increment> is omitted. If
the <initial line> is followed by a comma but no increment
is specified, the increment last used in an AUTO statement
is assumed.

If AUTO generates a line number that already exists in
the program currently in memory, it prints the number
followed by an asterisk. This is to warn the user that any
input will replace the existing line.

2) The RENUM command allows program lines to be "spread
out" so that a new line or lines may be inserted between
existing lines. The format of the RENUM command is as
follows:

RENUM [<NN>[<MM>[,<II>]]]
where NN is the new number of the first line to be
resequenced. If omitted, NN is assumed to be 10. Lines
less than MM will not be renumbered. If MM is omitted, the
whole program will be resequenced. II is the increment
between the lines to be resequenced. If II is omitted, it
is assumed to be 10. Examples:

RENUM Renumbers the whole program to start at line
10 with an increment of 10 between the new line numbers.

RENUM 100,,100 Renumbers the whole program to start
at line 100 with an increment of 100.

RENUM 6000,5000,1000 Renumbers the lines from 5000
up so they start at 6000 with an increment of 1000.

NOTE
RENUM cannot be used to change the order of program
lines (for example, RENUM 15,30 when the program has
three lines numbered 10, 20 and 30) nor to create
line numbers greater than 65529. An ILLEGAL
FUNCTION CALL error will result.

All line numbers appearing after a GOTO, GOSUB, THEN,
ON...GOTO, ON...GOSUB and ERL<relational operator> will be
properly changed by RENUM to reference the new line numbers.
If a line number appears after one of the statements above
but does not exist in the program, the message "UNDEFINED
LINE XXXXX IN YYYYY" will be printed. This line reference
(XXXXX) will not be changed by RENUM, but line number YYYYY
may be changed.

3) In the Extended and Disk versions, the current line
number may be designated by a period (.) anywhere a line
number reference is required. This is particularly useful
in the use of the EDIT command. See section 5-4.

4) Following the line number, one or more BASIC
statements are written. The first word of a statement
identifies the operations to be performed. The list of
arguments which follows the identifying word serves several
purposes. It can contain (or refer symbolically to) the

January, 1977 Page 8

data which is to be operated upon by the statement. In some ,
important instructions, the operation to be performed ^
depends upon conditions or options specified in the list.

Each type of statement will be considered in detail in
sections 2, 3 and 4.

More than one statement can be written on one line if
they are separated by colons (:). Any number of statements
can be joined this way provided that the line is no more
than 72 characters long in the 4K and 8K versions, or 255
characters in the Extended and Disk versions. In the
Extended and Disk versions, lines may be broken with the
LINE FEED key. Example:

100 IF X<Y+37<line feed>
THEN 5 <line feed>
ELSE PRINT(X)<carriage return>

The line is shown broken into three lines, but it is input
as one BASIC line.

b. REMarks. In many cases, a program can be more
easily understood if it contains remarks and explanations as
well as the statements of the program proper. In Altair
BASIC, the REM statement allows such comments to be included ^
without affecting execution of the program. The format of H
the REM statement is as follows:

REM <remarks>
A REM statement is not executed by BASIC, but branching
statements may link into it. REM statements are terminated
by the carriage return or the end of the line but not by a
colon. Example:

100 REM DO THIS LOOP:FOR I=1TO10 -the FOR statement
will not be executed

101 FOR 1=1 TO 10: REM DO THIS LOOP -this FOR statement will
be executed.

In Extended and Disk versions, remarks may be added to the
end of a program line separated from the rest of the line by
a single quotation mark ('). Everything after the single
quote will be ignored.

c. Errors. When the BASIC interpreter detects an
error that will cause the program to be terminated, it
prints an error message. The error message formats in
Altair BASIC are as follows:

Direct statement ?XX ERROR

1977 Page 9

Indirect statement ?XX ERROR IN nnnnn
XX is the error code or message (see section 6-5 for a list
of error codes and messages) and nnnnn is the line number
where the error occurred. Each statement has its own
particular possible errors in addition to the general errors
in syntax. These errors will be discussed in the
description of the individual statements.

1-4 Editing - elementary provisions.
Editing features are provided in Altair BASIC so that

mistakes can be corrected and features can be added and
deleted without affecting the remainder of the program. If
necessary, the whole program may be deleted. Extended and
Disk Altair BASIC have expanded editing facilities which
will be discussed in section 5.

a. Correcting single ̂ characters. If an incorrect
character is detected in a line as it is being typed, it can
be corrected immediately with the backarrow (underline on
some terminals) or ,except in 4K, the RUBOUT key. Each
stroke of the key deletes the immediately preceding
character. If there is no preceding character, a carriage
return is issued and a new line is begun. Once the unwanted
characters are removed, they can be replaced simply by
typing the rest of the line as desired.

When RUBOUT is typed, a backslash (\) is printed and
then the character to be deleted. Each successive RUBOUT
prints the next character to be deleted. Typing a new
character prints another backslash and the new character.
All characters between the backslashes are deleted.
Example:

100 X=\=X\Y=10 Typing two RUBOUTS deleted the '='
and 'X' which were subsequently
replaced by Y= .

b. correcting lines. A line being typed may be
deleted by typing an at-sign (@) instead of typing a
carriage return. A carriage return is printed automatically
after the line is deleted. Except in 4K, typing Control/U
has the same effect.

In the Extended and Disk versions, typing Control/A
instead of the carriage return will allow all the features
of the EDIT command (except the A command) to be used on the

January, 1977 Page 10

line currently being typed. See section 5-4.
c. correcting whole programs. The NEW command causes

the entire current program and all variables to be deleted.
NEW is generally used to clear memory space preparatory to
entering a new program.

2. STATEMENTS AND EXPRESSIONS.

2-1. Expressions.
The simplest BASIC expressions are single constants,

variables and function calls.
a. Constants. Altair BASIC accepts integers or

floating point real numbers as constants. All but the 4K
version of Altair BASIC accept string constants as well.
See section 4-1. Some examples of acceptable numeric
constants follow:

123
3.141
0.0436
1.25E+05

Data input from the terminal or numeric constants in a
program may have any number of digits up to the length of a
line (see section l-3a). In 4K and 8K Altair BASIC,
however, only the first 7 digits of a number are significant
and the seventh digit is rounded up. Therefore, the command

PRINT 1.234567890123
produces the following output:

1.23457
OK

In Extended and Disk versions of Altair BASIC, double
precision format allows 17 significant digits with the 17th
digit rounded up.

The format of a printed number is determined by the
following rules:
1. If the number is negative, a minus sign (-) is printed

to the left of the number. If the number is positive, a
space is printed.

1977 Page 11

2. If the absolute value of the number is an integer in
the range 0 to 999999, it is printed as an integer.

3. If the absolute value of the number is greater than or
equal to .01 and less than or equal to 999999, it is
printed in fixed point notation with no exponent.

4. In Extended and Disk versions, fixed point values up to
9999999999999999 are possible.

5. If the number does not fall into categories 2, 3 or 4,
scientific notation is used.

The formats of scientific notation are as follows:
SX.XXXXXESTT single precision
SX.XXXXXXXXXXXXXXXDSTT double precision

where S stands for the signs of the mantissa and the
exponent (they need not be the same, of course), X for the
digits of the mantissa and T for the digits of the exponent.
E and D may be read "...times ten to the power...."
Non-significant zeros are suppressed in the mantissa, but
two digits are always printed in the exponent. The sign
convention in rule 1 is followed for the mantissa. The
exponent must be in the range -38 to +38. The largest
number that may be represented in Altair BASIC is
1.70141E38, the smallest positive number is 2.9387E-38. The
following are examples of numbers as input and as output by
Altair BASIC:

Number Altair BASIC Output

The Extended and Disk versions of Altair BASIC allow
numbers to be represented in integer, single precision or
double precision form. The type of a number constant is
determined according to the following rules:

+1
-1
6523
1E20
-12.34567E-10
1.234567E-7
1000000
.1
.01
.000123
-25.460

1
-1
6523
1E20

-1.23456E-09
1.23457E-07
1E+06
.1
.01
1.23E-04

-25.46

January, 1977 Page 12

1. A constant with more than 7 digits or a 'D' instead of
'E' in the exponent is double precision.

2. A constant outside the range -32768 to 32767 with 7 or
fewer digits and a decimal point or with an 'E' exponent
is single precision.

3. A constant in the range -32768 to 32767 and no decimal
point is integer.

4. A constant followed by an exclamation point (!) is
single precision; a constant followed by a pound sign
(#) is double precision.

Two additional types of constants are allowed in
Extended and Disk versions of Altair BASIC. Hexadecimal
(base sixteen) constants may be explicitly designated by the
symbol &H preceding the number. The constant may not
contain any characters other than the digits 0 - 9 or
letters A - F, or a SYNTAX ERROR will occur. Octal
constants may be designated either by &0 or just the & sign.

In all formats, a space is printed after the number.
In all but the 4K version, Altair BASIC checks to see if the
entire number will fit on the current line. If not, it
issues a carriage return and prints the whole number on the
next line.

b. Variables
1) A variable represents symbolically any number which

is assigned to it. The value of a variable may be assigned
explicitly by the programmer or may be assigned as the
result of calculations in a program. Before a variable is
assigned a value, its value is assumed to be zero. In 4K ,
a variable name consists of one or two characters. The
first character is any letter. The second character must be
a numeral. In other versions of Altair BASIC, the variable
name may be any length, but any alphanumeric characters
after the first two are ignored. The first character must
be a letter. No reserved words may appear as variable names
or within variable names. The following are examples of
legal and illegal Altair BASIC variables:

Legal Illegal
In 4K and 8K Altair BASIC:

A %A (first character must
be alphabetic.)

Z1 Z1A (variable name is too
long for 4K)

Other versions:

January, 1977 Page 13

TP TO (variable names cannot
be reserved words)

PSTG$
COUNT RGOTO (variable names can-

not contain reserved
words.)

In all but 4K Altair BASIC, a variable may also
represent a string. Use of this feature is discussed in
section 4.

2) Extended and Disk versions of Altair BASIC allow the
use of Integer and Double Precision variables as well as
Single Precision and Strings. The type of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table below as the
last character of the variable name.

Type Symbol
Strings (0 to 255 characters) $
Integers (-32768 to 32767) %
Single Precision (up to 7 digits, exponent between

-38 and +38) !
Double Precision (up to 16 digits, exponent between

-38 and +38) #
Internally, BASIC handles all numbers in binary. Therefore,
some 8 digit single precision and 17 digit double precision
numbers may be handled correctly,If no type is explicitly
declared, type is determined by the first letter of the
variable name according to the type table. The table of
types may be modified with the following statements.

DEFINT r
DEFSTR r
DEFSNG r
DEFDBL r

Integer
String
Single Precision
Double Precision

where r is a letter or range of letters to be designated.
Examples:

15 DEFINT 1-N
20 DEFDBL D

Variable names beginning with the let-
ters 1-N are to be of integer type.
Variable names beginning with D are to
be of double precision type.

C
If no type definition statements are encountered, BASIC
proceeds as if it had executed a DEFSNG A-Z statement.

January, 1977 Page 14

3) Integer variables should be used wherever possible
since they take the least amount of space in memory and
integer arithmetic is much faster than single precision
arithmetic.

Care must be exercised when single precision and double
precision numbers are mixed. Since single precision numbers
can have more significant digits than will be printed, a
double precision variable set to a single precision value
may not print the same as the single precision variable.

10 A=1.01 single precision value
20 B#=A*10:C#=CDBL(A)*10# convert to double precision
30 PRINTA?B#;C#;CDBL(A) in various ways
RUN
1.01 10.10000038146973 10.09999990463257 1.009999990463257

OK
In order to assure that double precision numbers will print
the same as single precision, the VAL and STR$ functions
should be used. For example:

10A=1.01
20 B#=VAL(STR$(A)):C#=B#*10#
30 PRINT A?B#?C#
RUN
1.01 1.01 10.1

OK
c. Array Variables. It is often advantageous to refer

to several variables by the same name. In matrix
calculations, for example, the computer handles each element
of the matrix separately, but it is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC provides subscripted variables, or
arrays. The form of an array variable is as follows:

W(<subscript> [,<subscript>...])
where W is a variable name and the subscripts are integer
expressions. Subscripts may be enclosed in parentheses or
square brackets. An array variable may have only one
dimension in 4K, but in all other versions of Altair BASIC
it may have as many dimensions as will fit on a single line.
The smallest subscript is zero. Examples:

A(5) The sixth element of array A. The first
element is A(0).

ARRAY(I,2*J) The address of this element in a two-
dimensional array is determined by
evaluating the expressions in parenthe-
ses at the time of the reference to the

January, 1977 Page 15

, array and truncating to integers. If
1=3 and J=2.4, this refers to ARRAY(3,4).

The DIM statement allocates storage for array variables and
sets all array elements to zero. The form of the DIM
statement is as follows:

DIM W(<subscript>[,<subscript>...])
where W is a legal variable name. Subscript is an integer
expression which specifies the largest possible subscript
for that dimension. Each DIM statement may apply to more
than one array variable. Some examples follow:

113 DIM A(3), D$(2,2,2)
114 DIM R2%(4), B(10)
115 DIM Q1(N), Z#(2+I) Arrays may be dimensioned dy-

namically during program
execution. At the time the
DIM is executed, the expression
within the parentheses is e-
valuated and the results trun-
cated to integer.

If no DIM statement has been executed before an array
variable is found in a program, BASIC assumes the variable
to have a maximum subscript of 10 (11 elements) for each
dimension in the reference. A BS or SUBSCRIPT OUT OF RANGE
error message will be issued if an attempt is made to
reference an array element which is outside the space
allocated in its associated DIM statement. This can occur
when the wrong number of dimensions is used in an array
element reference. For example:

30 LET A(1,2,3)=X when A has been dimensioned by
10 DIM A(2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM
statement for an array is found after that array has been
dimensioned. This often occurs when a DIM statement appears
after an array has been given its default dimension of 10.

d. Operators and Precedence. Altair BASIC provides a
full range of arithmetic and (except in 4K) logical
operators. The order of execution of operations in an
expression is always according to their precedence as shown
in the table below. The order can be specified explicitly
by the use of parentheses in the normal algebraic fashion.

Table of Precedence
C

January, 1977 Page 16

Operators are shown here in decreasing order of precedence.
Operators listed in the same entry in the table have the
same precedence and are executed in order from left to right
in an expression.
1. Expressions enclosed in parentheses ()
2. * exponentiation (not in 4K). Any number to the zero

power is 1. Zero to a negative power causes a /0 or
DIVISION BY ZERO error.

3. - negation, the unary minus operator
4. *,/ multiplication and division
5. \ integer division (available in Extended and Disk

versions, see section 5-2)
6. MOD (available in Extended and Disk versions. See

section 5-2)
7. +,- addition and subtraction
8. relational operators

= equal
<> not equal
< less than
> greater than

less than or equal to
>=,=> greater than or equal to

(the logical operators below are not available in 4K)

9. NOT logical, bitwise negation
10. AND logical, bitwise disjunction
11. OR logical, bitwise conjunction

(The logical operators below are available only in
Extended and Disk versions.)

12. XOR logical, bitwise exclusive OR
13. EQV logical, bitwise equivalence
14. IMP logical, bitwise implication
In 4K Altair BASIC, relational operators may be used only
once in an IF statement. In all other versions, relational

1977 Page 17

operators may be used in any expressions. Relational
expressions have the value either of True (-1) or False (0).

e. Logical Operations., Logical operators may be used
for bit manipulation and Boolean algebraic functions. The
AND, OR, NOT, XOR, EQV and IMP operators convert their
arguments into sixteen bit, signed, two's complement
integers in the range -32768 to 32767. After the operations
are performed, the result is returned in the same form and
range. If the arguments are not in this range, an FC or
ILLEGAL FUNCTION CALL error message will be printed and
execution will be terminated. Truth tables for the logical
operators appear below. The operations are performed
bitwise, that is, corresponding bits of each argument are
examined and the result computed one bit at a time. In
binary operations, bit 7 is the most significant bit of a
byte and bit 0 is the least significant.

X Y X AND
1 1 1
1 0 0
0 1 0
0 0 0
X Y X OR
1 1 1
1 0 1
0 1 1
0 0 0
X NOT X
1 0
0 1
X Y X XOR
1 1 0
1 0 1
0 1 1
0 0 0
X Y X EQV
1 1 1
1 0 0
0 1 0
0 0 1
X Y X IMP
1 1 1
1 0 0
0 1 1
0 0 1

OR

NOT

XOR

EQV

IMP

X A N D Y
1
0
0
0

X O R Y
1
1
1
0

NOT X
0
1

Y X X O R Y
1 0
0 1
1 1
0 0

X E Q V Y
1
0
0
1

X I M P Y
1
0
1
1

January, 1977 Page 18

Some examples will serve to show how the logical operations
work:

63 AND 16=16 63=binary 111111 and 16=binary 10000,
so 63 AND 16=16

15 AND 14=14 15= binary 1111 and 14=binary 1110,
so 15 AND 14=binary 1110=14.

-1 AND 8=8 -l=binary 1111111111111111 and 8=binary
1000, so -1 AND 8=8.

4 OR 2=6 4=binary 100 and 2=binary 10 so
4 OR 2=binary 110=6.

10 OR 10=10 binary 1010 OR'd with itself is 1010=
10.

-1 OR -2=-l -l=binary 1111111111111111 and -2=
1111111111111110, so -1 OR -2=-l.

NOT 0=-l the bit complement of sixteen zeros
is sixteen ones, which is the two's
complement representation of -1.

NOT X=-(X+1) the two's complement of any number is
the bit complement plus one.

A typical use of logical operations is 'masking', testing a
binary number for some predetermined pattern of bits. Such
numbers might come from the computer's input ports and would
then reflect the condition of some external device. Further
applications of logical operations will be considered in the
discussion of the IF statement.

f. The LET statement. The LET statement is used to
assign a value to a variable. The form is as follows:

LET <VV>=<expression>
where W is a variable name and the expression is any valid
Altair BASIC arithmetic or, except in 4K, logical or string
expression. Examples:

1000 LET V=X
110 LET 1=1+1 the '=' sign heremeans 'is replaced

by '
The word LET in a LET statement is optional, so algebraic
equations such as:

120 V=.5*(X+2)
are legal assignment statements.

A SN or SYNTAX ERROR message is printed when BASIC
detects incorrect form, illegal characters in a line,
incorrect punctuation or missing parentheses. An OV or
OVERFLOW error occurs when the result of a calculation is

January, 1977 Page 19

too large to be represented by Altair BASIC'S number
formats. All numbers must be within the range 1E-38 to
1.70141E38 or -1E-38 to -1.70141E38. An attempt to divide
by zero results in the /0 or DIVISION BY ZERO error message.

For a discussion of strings, string variables and
string operations, see section 4.

2-2. Branching, Loops and Subroutines.
a. Branching. In addition to the sequential execution

of program lines, BASIC provides for changing the order of
execution. This provision is called branching and is the
basis of programmed decision making and loops. The
statements in Altair BASIC which provide for branching are
the GOTO, IF...THEN and ON.,. .GOTO statements.

1) GOTO is an unconditional branch. Its form is as
follows:

GOTO<mmmmm>
After the GOTO statement is executed, execution continues at
line number mmmmm.

/ 2) IF...THEN is a conditional branch. Its form is as
follows:

IF<expression>THEN<mmmmm>
where the expression is a valid arithmetic, relational or,
except in 4K, logical expression and mmmmm is a line number.
If the expression is evaluated as non-zero, BASIC continues
at line mmmmm. Otherwise, execution resumes at the next
line after the IF...THEN statement.

An alternate form of the IF...THEN statement is as
follows:

IF<expression>THEN<stat.ement>
where the statement is any Altair BASIC statement.
Examples:

10 IF A=10 THEN 40 If the expression A=10 is
true, BASIC branches to line 40. Otherwise,
execution proceeds at the next line.

15 IF A<B+C OR X THEN 100 The expression after IF is
evaluated and if the value of the expression is
non-zero, the statement branches to line 100.

C

January, 1977 Page 20

Otherwise, execution continues on the next line.
20 IF X THEN 25 If X is not zero, the statement

branches to line 25.
30 IF X=Y THEN PRINT X If the expression X=Y is true

(its value is non-zero), the PRINT statement is
executed. Otherwise, the PRINT statement is not
executed. - In either case, execution continues with
the line after the IF...THEN statement.

35 IF X=Y+3 GOTO 39 Equivalent to the corresponding
IF...THEN statement, except that GOTO must be.
followed by a line number and not by another
statement.

Extended and Disk versions of Altair BASIC provide an
expanded IF...THEN statement of the form

IF<expression>THEN<YY>ELSE<ZZ>
where YY and ZZ are valid line numbers or Altair BASIC
statements. Examples:

IF X>Y THEN PRINT "GREATER" ELSE PRINT "NOT GREATER"
If the expression X>Y is true, the statement after THEN is
executed; otherwise, the statement after ELSE is executed.

IF X=2*Y THEN 5 ELSE PRINT "ERROR"
If the expression X=2*Y is true, BASIC branches to line 5?.
otherwise, the PRINT statement is executed. Extended and
Disk Altair BASIC allow a comma before THEN.

IF statements may be nested in the Extended and Disk
versions. Nesting is limited only by the length of the
line. Thus, for example:
IF X>Y THEN PRINT "GREATER" ELSE IF Y>X

THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"
and

IF X=Y THEN IF Y>Z THEN PRINT "X>Z" ELSE PRINT "Y<=Z"
ELSE PRINT "XOY"

are legal statements. If a line does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with
the closest unmatched THEN. Example:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "AOC"
will not print "AOC" when AOB.

January, 1977 Page 21

3) ON...GOTO (not in 4K) provides for another type of
conditional branch. Its form is as follows:

ON<expression>GOTO<list of line numbers>
After the value of the expression is truncated to an
integer, say I, the statement causes BASIC to branch to the
line whose number is 1th in the list. The statement may be
followed by as many line numbers as will fit on one line.
If 1=0 or is greater than the number of lines in the list,
execution will continue at the next line after the ON...GOTO
statement. I must not be less than zero or greater than
255, or an FC or ILLEGAL FUNCTION CALL error will result.

b. Loops. It is often desirable to perform the same
calculations on different data or repetitively on the same
data. For this purpose, Altair BASIC provides the FOR and
NEXT statements. The form of the FOR statement is as
follows:

FOR<variable>=<X>TO<Y>[STEP <Z>]
where X,Y and Z are expressions. When the FOR statement is
encountered for the first time, the expressions are
evaluated. The variable is set to the value of X which is
called the initial value. BASIC then executes the
statements which follow the FOR statement in the usual
manner. When a NEXT statement is encountered, the step Z is
added to the variable which is then tested against the final
value Y. If Z, the step, is positive and the variable is
less than or equal to the final value, or if the step is
negative and the variable is greater than or equal to the
final value, then BASIC branches back to the statement
immediately following the FOR statement. Otherwise,
execution proceeds with the statement following the NEXT.
If the step is not specified, it is assumed to be 1.
Examples:

10 FOR 1=2 TO 11 The loop is executed 10 times with
the variable I taking on each in-
tegral value from 2 to 11.

20 FOR V=1 TO 9.3 This loop will execute 9 times un-
til V is greater than 9.3

30 FOR V=10*N TO 3.4/Z STEP SQR(R) The initial, final
and step expressions need not be
integral, but they will be eval-
uated only once, before loop-
ing begins.

40 FOR V=9 TO 1 STEP -1 This loop will be executed 9
times.

FOR...NEXT loops may be nested. That is, BASIC will execute
C

anuary,^ 1977 Page 22

a FOR...NEXT loop within the context of another loop. An
example of two nested loops follows:

100 FOR 1=1 TO 10
120 FOR J=1 TO I
130 PRINT A(I,J)
140 NEXT J
150 NEXT I

Line 130 will print 1 element of A for 1=1, 2 for 1=2 and so
on. If loops are nested, they must have different loop
variable names. The NEXT statement for the inside loop
variable (J in the example) must appear before that for the
outside variable (I). Any number of levels of nesting is
allowed up to the limit of available memory.

The NEXT statement is of the form:
NEXT[<variable>[,<variable>...]]

where each variable is the loop variable of a FOR loop for
which the NEXT statement is the end point. In the 4K
version, the only form allowed is NEXT with one variable.
In all other versions, NEXT without a variable will match
the most recent FOR statement. In the case of nested loops
which have the same end point, a single NEXT statement may
be used for all of them, except in 4K. The first variable
in the list must be that of the most recent loop, the second
of the next most recent, and so on. If BASIC encounters a
NEXT statement before its corresponding FOR statement has
been executed, an NF or NEXT WITHOUT FOR error message is
issued and execution is terminated.

c. Subroutines. If the same operation or series of
operations are to be performed in several places in a
program, storage space requirements and programming time
will be minimized by the use of subroutines. A subroutine
is a series of statements which are executed in the normal
fashion upon being branched to by a GOSUB statement.
Execution of the subroutine is terminated by the RETURN
statement which branches back to the statement after the
most recent GOSUB. The format of the GOSUB statement is as
follows:

GOSUB<line number>
where the line number is that of the first line of the
subroutine. A subroutine may be called from more than one
place in a program, and a subroutine may contain a call to
another subroutine. Such subroutine nesting is limited only
by available memory.

1977 Page 23

Except in the 4K version, subroutines may be branched
to conditionally by use of the ON...GOSUB statement, whose
form is as follows:

ON <expression> GOSUB Clist of line numbers>
The execution is the same as ON...GOTO except that the line
numbers are those of the first lines of subroutines.
Execution continues at the next statement after the
ON...GOSUB upon return from one of the subroutines.

d. OUT OF MEMORY errors. While nesting in loops,
subroutines and branching is not limited by BASIC, memory
size limitations restrict the size and complexity of
programs. The OM or OUT OF MEMORY error message is issued
when a program requires more memory than is available. See
Appendix C for an explanation of the amount of memory
required to run programs.
2-3. Input/Output

a. INPUT. The INPUT statement causes data input to be
requested from the terminal. The format of the INPUT
statement is as follows:

INPUT<list of variables>
The effect of the INPUT statement is to cause the values
typed on the terminal to be assigned to the variables in the
list. When an INPUT statement is executed, a question mark
(?) is printed on the terminal signalling a request for
information. The operator types the required numbers or
strings (or, in 4K, expressions) separated by commas and
types a carriage return. If the data entered is invalid
(strings were entered when numbers were requested, etc.)
BASIC prints 'REDO FROM START?' and waits for the correct
data to be entered. If more data was requested by the INPUT
statement than was typed, ?? is printed on the terminal and
execution awaits the needed data. If more data was typed
than was requested, the warning 'EXTRA IGNORED' is printed
and execution proceeds. After all the requested data is
input, execution continues normally at the statement
following the INPUT. Except in 4K, an optional prompt
string may be added to an INPUT statement.

INPUT["<prompt string>"y]<variable list>
Execution of the statement causes the prompt string to be
printed before the question mark. Then all operations
proceed as above. The prompt string must be enclosed in
double quotation marks (") and must be separated from the

anuary, 1977 Page 24

variable list by a semicolon (;). Example:
100 INPUT "WHAT'S THE VALUE"?X,Y causes the following

output:
WHAT'S THE VALUE?

The requested values of X and Y are typed after the ?
Except in 4K, a carriage return in response to an INPUT
statement will cause execution to continue with the values
of the variables in the variable list unchanged. In 4K, a
SN error results.

b. PRINT. The PRINT statement causes the terminal to
print data. The simplest PRINT statement is:

PRINT
which prints a carriage return,
line. The more usual PRINT
form:

PRINT<list of expressions>

The effect is to skip a
statement has the following

which causes the values of the expressions in the list to be
printed. String literals may be printed if they are
enclosed in double quotation marks (").

The position of printing is determined by the
punctuation used to separate the entries in the list.
Altair BASIC divides the printing line into zones of 14
spaces each. A comma causes printing of the value of the
next expression to begin at the beginning of the next 14
column zone. A semicolon (;) causes the next printing to
begin immediately after the last value printed. If a comma
or semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line according
to the conditions above. Otherwise, a carriage return is
printed.

c. DATA, READ, RESTORE
1) the DATA statement. Numerical or string data needed

in a program may be written into the program statements
themselves, input from peripheral devices or read from DATA
statements. The format of the DATA statement is as follows:

DATA<list>
where the entries in the list are numerical or string
constants separated by commas. In 4K, expressions may also

1977 Page 25

appear in the list. The effect of the statement is to store
the list of values in memory in coded form for access by the
READ statement. Examples:

10 DATA 1,2,-1E3,.04
20 DATA " LOO", HITS Leading and trailing spaces in

string values are suppressed unless the string is
enclosed by double quotation marks.

2) The READ statement. The data stored by DATA
statements is accessed by READ statements which have the
following form:

READClist of variables>
where the entries in the list are variable names separated
by commas. The effect of the READ statement is to assign
the values in the DATA lists to the corresponding variables
in the READ statement list. This is done one by one from
left to right until the READ list is exhausted. If there
are more names in the READ list than values in the DATA
lists, an OD or OUT OF DATA error message is issued. If
there are more values stored in DATA statements than are
read by a READ statement, the next READ statement to be
executed will begin with the next unread DATA list entry. A
single READ statement may access more than one DATA
statement, and more than one READ statement may access the
data in a single DATA statement.

An SN or SYNTAX ERROR message can result from an
improperly formatted DATA list. In 4K Altair BASIC, such an
error message will refer to the READ statement which
attempted to access the incorrect data. In other versions,
the line number in the error message will refer to the
actual line of the DATA statement in which the error
occurred.

3) RESTORE statement. After the RESTORE statement is
executed, the next piece of data accessed by a READ
statement will be the first entry of the first DATA list in
the program. This allows re-READing the data.

d. CSAVEing and CLOADing Arrays (8K cassette, Extended
and Disk versions only). Numeric arrays may be saved on
cassette or loaded from cassette using CSAVE* and CLOAD* The
formats of the statements are:

CSAVE*<array name>
and

1977 Page 26

CLOAD*<array name>
The array is written out in binary with four octal 210
header bytes to indicate the start of data. These bytes are
searched for when CLOADing the array. The number of bytes
written is four plus:

8*<number of elements> for a double precision array
4*<number of elements> for a single precision array
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript varying
most quickly, the next leftmost second, etc:

DIM A(10)
CSAVE+A

writes out A(0),A(1),...A(10)
DIM A(10,10)

CSAVE*A
writes out A(0,0), A(1,0)...A(10,0),A(10,1)...A(10,10)
Using this fact, it is possible to write out an array as a
two dimensional array and read it back in as a single
dimensional array, etc.

NOTE
Writing out a double precision array and reading it
back in as a single precision or integer array is
not recommended. Useless values will undoubtedly be
returned.

e. Miscellaneous Input/Output
1) WAIT (not in 4K). The status of input ports can be

monitored by the WAIT command which has the following
format:

WAIT<I,J>[,<K>]
where I is the number of the port being monitored and J and
K are integer expressions. The port status is exclusive ORd
with K and the result is ANDed with J. Execution is

January, 1977 Page 27

suspended until a non-zero value results. J picks the bits
of port I to be tested and execution is suspended until
those bits differ from the corresponding bits of K.
Execution resumes at the next statement after the WAIT. If
K is omitted, it is assumed to be zero. I, J and K must be
in the range 0 to 255. Examples:

WAIT 20,6 Execution stops until either bit 1 or bit
2 of port 20 are equal to 1. (Bit 0 is
least significant bit, 7 is the most sig-
nificant.) Execution resumes at the next
statement.

WAIT 10,255,7 Execution stops until any of the most significant
5 bits of port 10 are one or any of the least
significant 3 bits are zero. Execution
resumes at the next statement.

2) POKE, PEEK (not in 4K). Data may be entered into
memory in binary form with the POKE statement whose format
is as follows:

POKE<I,J>
where I and J are integer expressions. POKE stores the byte
J into the location specified by the value of I. In 8K, I
must be less than 32768. In Extended and Disk versions, I
may be in the range 0 to 65536. J must be in the range 0 to
255. In 8K, data may be POKEd into memory above location
32768 by making I a negative number. In that case, I is
computed by subtracting 65536 from the desired address. To
POKE data into location 45000, for example, I is
45000-65536=-20536. Care must be taken not to POKE data
into the storage area occupied by Altair BASIC or the system
may be POKEd to death, and BASIC will have to be loaded
again.

The complementary function to POKE is PEEK. The format
for a PEEK call is as follows:

PEEK(<I>)
where I is an integer expression specifying the address from
which a byte is read. I is chosen in the same way as in the
POKE statement. The value returned is an integer between 0
and 255. A major use of PEEK and POKE is to pass arguments
and results to and from machine language subroutines.

3)OUT, INP (not in 4K). The format of the OUT
statement is as follows:

January, 1977 Page 28

OUT <I,J>
where I and J are integer expressions. OUT sends the byte
signified by J to output port I. I and J must be in the
range 0 to 255.

The INP function is called as follows:
INP(<I>)

INP reads a byte from port I where I is an integer
expression in the range 0 to 255. Example:

20 IF INP(J)=16 THEN PRINT "ON"

3. FUNCTIONS

Altair BASIC allows functions to be referenced in
mathematical function notation. The format of a function
call is as follows:

<name>(<argument>[,<argument>...])
where the name is that of a previously defined function and
the arguments are one or more expressions, separated by
commas. Only one argument is allowed in 4K and 8K.
Function calls may be components of expressions, so
statements like

10 LET T=(F*SIN(T-))/P and
20 C=SQR(A'2+B'2+2*A*B*COS(T))

are legal.

3-1. Intrinsic Functions
Altair BASIC provides several frequently used functions
which may be called from any program without further
definition. A procedure is provided, however, whereby
unneeded functions may be deleted to save memory space. See
Appendix B. For a list of intrinsic functions, see section
6-3.

3-2. User-Defined Functions (not in 4K).

1977 Page 29

a. The DEF statement. The programmer may define
functions which are not included in the list of intrinsic
functions by means of the DEF statement. The form of the
DEF statement is as follows:

DEF<function name>(<variable list>)=<expression>
where the function name must be FN followed by a legal
variable name and the entries in the variable list are
'dummy' variable names. The dummy variables represent the
argument variables or values in the function call. In 8K
Altair BASIC, only one argument is allowed for a
user-defined function, but in the Extended and Disk
versions, any number of arguments is allowed. Any
expression may appear on the right side of the equation, but
it must be limited to one line. User-defined functions may
be of any type in Extended and Disk versions, but
user-defined string functions are not allowed in 8K if a
type is specified for the function, the value of the
expression is forced to that type before it is returned to
the calling statement. Examples:

10 DEF FNAVE(V,W)=(V+W)/2
11 DEF FNC0N$(V$,WS)=RIGHT$(V$+W$,5) Returns the right

most 5 characters of the concat-
enation of V$ and W$.

12 DEF FNRAD(DEG)=3.14159/180*DEG When called with the
measure of an angle in degrees,
returns the radian equivalent.

A function may be redefined by executing another DEF
statement with the same name. A DEF statement must be
executed before the function it defines may be called.

b. USR. The USR function allows calls to assembly
language subroutines. See appendix E.
3-3. Errors.

An FC or ILLEGAL FUNCTION CALL error results when an
improper call is made to a function. Some places this might
occur are the following:
1. a negative array subscript. LET A(-1)=0, for example.
2. an array subscript that is too large (>32767)
3. negative or zero argument for LOG

1977 Page 30

4. Negative argument for SQR
5. A*B with A negative and B not an integer
6. a call to USR with no address patched for the machine

language subroutine.
7. improper arguments to MID$, LEFT$,RIGHT$, INP, OUT,

WAIT, PEEK, POKE, TAB, SPC, INSTR, STRING$, SPACE$ or
ON...GOTO.

b. An attempt to call a user-defined function which
has not previously appeared in a DEF statement will cause a
UF or UNDEFINED USER FUNCTION error.

c. A TM or TYPE MISMATCH error will occur if a
function which expects a string argument is given a numeric
value or vice-versa.

4. STRINGS
In all Altair BASIC versions except 4K, expressions may

either have numeric value or may be strings of characters.
Altair BASIC provides a complete complement of statements
and functions for manipulating string data. Many of the
statements have already been discussed so only their
particular application to strings will be treated in this
section.

4-1. String Data.
A string is a list of alphanumeric characters which may

be from 0 to 255 characters in length. Strings may be
stated explicitly as constants or referred to symbolically
by variables. String constants are delimited by quotation
marks at the beginning and end. A string variable name ends
with a dollar sign ($). Examples:

A$="ABCD" Sets the variable A$ to the four character
string "ABCD"

B9$="14A/56" Sets the variable B9$ to the six character
string "14A/56"

FOOFOO$="E$" Sets the variable FOOFOO$ to the two charac-
ter string "E$"

Strings input to an INPUT statement need not be surrounded

1977 Page 31

by quotation marks.
String arrays may be dimensioned exactly as any other

kind of array by use of the DIM statement. Each element of
a string array is a string which may be up to 255 characters
long. The total number of string characters in use at any
point in the execution of a program must not exceed the
total allocation of string space or an OS or OUT OF STRING
SPACE error will result. String space is allocated by the
CLEAR command which is explained in section 6-2.
4-2. String operations.

a. Comparison Operators. The comparison operators for
strings are the same as those for numbers:

=* equal
<> not equal
< less than
> greater than

less than or equal to
->,>= greater than or equal to

Comparison is made character by character on the basis of
ASCII codes until a difference is found. If, while
comparison is proceeding, the end of one string is reached,
the shorter string is considered to be smaller. ASCII codes
may be found in Appendix B. Examples:

A<Z ASCII A is 065, Z is 090
1<A ASCII 1 is 049
" A">"A" Leading and trailing blanks are significant

in string literals.
b. String Expressions. String expressions are

composed of string literals, string variables and string
function calls connected by the + or concatenation operator.
The effect of the catenation operator is to add the string
on the right side of the operator to the end of the string
on the left. If the result of concatenation is a string
more than 255 characters long, an LS or STRING TOO LONG
error message will be issued and execution will be
terminated.

c. Input/Output. The same statements used for input
and output of normal numeric data may be used for string
data, as well.

January, 1977 Page 32

1) INPUT/ PRINT. The INPUT and PRINT statements read
and write strings on the terminal. Strings need not be
enclosed in quotation marks, but if they are not, leading
blanks will be ignored and the string will be terminated
when the first comma or colon is encountered. Examples:

10 INPUT ZOO$,FOO$ Reads two strings
20 INPUT X$ Reads one string and assigns

it to the variable X$.
30 PRINT X$,"HI, THERE" Prints two strings, including

all spaces and punctuation
in the second.

2) DATA, READ. DATA and READ statements for string
data, are the same as for numeric data. For format
conventions, see the explanation of INPUT and PRINT above.
4-3. String Functions.

The format for intrinsic string function calls is the
same as that for numeric functions. For the list of string
functions, see section 6-3. Special user-defined string
functions are allowed in Extended and Disk versions and may
be defined by the use of the DEF statement (see section
3-2). String function names must end with a dollar sign.

5. EXTENDED VERSIONS.

The Extended and Disk versions of Altair BASIC provide
several statements, operators, functions and commands which
are not available either in the 4K or 8K versions. For
clarity, these features are grouped together in this
section. Some modifications to existing 4K and 8K features,
such as the IF...THEN...ELSE statement and number typing
facilities, have been discussed in conjunction with the
other versions. Check the index for references to those
features.
5-1. Extended Statements

a. ERASE. The ERASE statement eliminates arrays from
a program and allows their space in memory to be used for
other purposes. The format of the ERASE statement is as
follows:

1977 Page 33

ERASE<array variable list>
where the entries in the list are valid array variable names
separated by commas. ERASE will only operate on arrays and
not array elements. If a name appears in the list which is
not used in the program, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted in an ERASE statement may be
dimensioned again, but the old values are lost. Example:

10 DIM A(5,5) etc.

60 ERASE A
70 DIM A(100)

b. LINE INPUT. It is often desirable to input a whole
line to a string variable without use of quotation marks and
other delimiters. LINE INPUT provides this facility. The
format of the LINE INPUT statement is as follows:

LINE INPUT ["<prompt string>",];<string variable name>
The prompt string is a string literal that is printed on the
terminal before input is accepted. A question mark is not
printed unless it is contained in the prompt string. All
input from the end of the prompt string to the carriage
return is assigned to the string variable. A LINE INPUT may
be escaped by typing Control/C. At that point, BASIC
returns to command level and prints OK. Execution may be
resumed at the LINE INPUT by typing CONT. LINE INPUT
destroys the input buffer, so the command may not be edited
by Control/A for re-execution.

c. SWAP. The SWAP statement allows the values of two
variables to be exchanged. The format is as follows:

SWAP <variable,variable>
The value of the second variable is assigned to the first
variable and vice-versa. Either or both of the variables
may be elements of arrays. If one or both of the variables
are non-array variables which have not had values assigned
to them, an ILLEGAL FUNCTION CALL error will result. Both
variables must be of the same type or a TYPE MISMATCH error
will result. Example:

10 INPUT F$,L$
20 SWAP F$,L$
30 PRINT F$,L$
RUN

January, 1977 Page 34

?FIRST,LAST Data input
LAST FIRST Computer prints

d. TRON, TROFF. As a debugging aid, two statements
are provided to trace the execution of program instructions.
When the trace flag is turned on by the TRON statement, the
number of each line in the program is printed as it is
executed. The numbers appear enclosed in square brackets
([]). The function is disabled by execution of the TROFF
statement. Example:

TRON executed in direct mode
OK printed by computer
10 PRINT 1:PRINT "A" typed by programmer
20 STOP
RUN
[10] 1 line numbers and output printed by
A computer.
[20]

BREAK IN 20
The NEW command will also turn off the trace flag.

e. IF...THEN...ELSE. See section 2-2.
f. DEFINT, DEFSNG, DEFDBL, DEFSTR. See section 2-1
g. CONSOLE, WIDTH. CONSOLE allows the console

terminal to be switched from one I/O port to another. The
format of the statement is:

CONSOLE <1/0 port number>,<switch register setting^
The <1/0 port number> is the hardware port number of the low
order (status) port of the new I/O board. This value must
be a numeric expression between 0 and 255 inclusive. If it
is not in this range, an ILLEGAL FUNCTION CALL error will
occur. The <switch register setting> is also a value
between 0 and 255 inclusive which specifies the type of I/O
port (SIO, PIO, 4PI0 etc) being selected. Appropriate
values of the <switch register setting> may be found in
Appendix B in the table of sense switch settings or in the
table below.

Page 35

Table of values for <switch register setting>
I/O Board

2SI0 with 2 stop bits
2SI0 with 1 stop bit
SIO
ACR
4PI0
PIO
HSR
non-standard terminal
no terminal

Sense Switch
Setting
0
1
2
3
4
5
6

14
15

WIDTH Statement

The WIDTH statement sets the width in characters of the
printing terminal line. The format of the WIDTH statement
is as follows:

WIDTH Cinteger expressi.on>
Example:

WIDTH 80
WIDTH 32

The <numeric formula> must have a value between 15 and 255
inclusive, or an ILLEGAL FUNCTION CALL error will occur.

h. Error Trapping. Extended and Disk Altair BASIC
make it possible for the user to write error detection and
handling routines which can attempt to recover from errors
or provide more complete explanation of the cause of errors
than the simple error messages. This facility has been
added to Altair BASIC through the use of the ON ERROR GOTO,
RESUME and ERROR statements and with the ERR and ERL
variables.

1) Enabling Error Trapping. The ON ERROR GOTO
statement specifies the line of the Altair BASIC program on
which the error handling subroutine starts. The format is
as follows:

ON ERROR GOTO <line number>

January, 1977 Page 36

The ON ERROR GOTO statement should be executed before the
user expects any errors to occur. Once an ON ERROR GOTO
statement has been executed, all errors detected will cause
BASIC to start execution of the specified error handling
routine. If the <line number> specified in the ON ERROR
GOTO statement does not exist, an UNDEFINED LINE error will
occur.
Example:

10 ON ERROR GOTO 1000

2) Disabling the Error Routine. ON ERROR GOTO 0
disables trapping of errors so any subsequent error will
cause BASIC to print an error message and stop program
execution. If an ON ERROR GOTO 0 statement appears in an
error trapping subroutine, it will cause BASIC to stop and
print the error message which caused the trap. It is
recommended that all error trapping subroutines execute an
ON ERROR GOTO 0 subroutine if an error is encountered for
which they have no recovery action.

NOTE
If an error occurs during the execution of an error
trap routine, the system error message will be
printed and execution will be terminated. Error
trapping does not trap errors within the error trap
routine.

3) The ERR and ERL Variables. When the error handling
subroutine is entered, the variable ERR contains the error
code for the error. The error codes and their meanings are
listed below. See section 6-5 for a detailed discussion of
each of the errors and error messages.

Code Error
1 NEXT WITHOUT FOR
2 SYNTAX ERROR
3 RETURN WITHOUT GOSUB
4 OUT OF DATA
5 ILLEGAL FUNCTION CALL
6 OVERFLOW
7 OUT OF MEMORY
8 UNDEFINED LINE
9 SUBSCRIPT OUT OF RANGE

January, 1977 Page 37

10 REDIMENSIONED ARRAY
11 DIVISION BY ZERO
12 ILLEGAL DIRECT
13 TYPE MISMATCH
14 OUT OF STRING SPACE
15 STRING TOO LONG
16 STRING FORMULA TOO COMPLEX
17 CAN'T CONTINUE
18 UNDEFINED USER FUNCTION
19 UNPRINTABLE ERROR'-
20 NO RESUME
21 RESUME WITHOUT ERROR
2 2 MISSING OPERAND
23 LINE BUFFER OVERFLOW

Disk Errors
50 FIELD OVERFLOW
51 INTERNAL ERROR
52 BAD FILE NUMBER
53 FILE NOT FOUND
54 BAD FILE MODE
55 FILE ALREADY OPEN
56 DISK NOT MOUNTED
57 DISK I/O ERROR
58 FILE ALREADY EXISTS
59 SET TO NON-DISK STRING
60 DISK ALREADY MOUNTED
61 DISK FULL
62 INPUT PAST END
63 BAD RECORD NUMBER
64 BAD FILE NAME
65 MODE-MISMATCH
66 DIRECT STATEMENT IN FILE
67 TOO MANY FILES
68 OUT OF RANDOM BLOCKS

The ERL variable contains the line number of the line
where the error was detected. For instance, if the error
occured in line 1000, ERL will be equal to 1000. If the
statement which caused the error was a direct mode
statement, ERL will be equal to 65535 decimal. To test if
an error occurred in a direct statement, use

IF 65535=ERL THEN ...
In all other cases, use

IF ERL=<line number> THEN...

1977 Page 38

If the line number is on the left of the equation, it cannot
be renumbered by RENUM (see section 1-la).

4) Disk Error Values - The ERR function. The ERR
function returns the parameters of a DISK I/O ERROR. ERR(0)
returns the number of the disk, ERR(l) returns the track
number (0-76) and ERR(2) returns the sector number (0-31).
ERR(3) and ERR(4) contain the low and high order bytes,
respectively, of the cumulative error count since BASIC was
loaded.

NOTE
Neither ERL nor ERR may appear to the left of the =
sign in a LET or assignment statement.

5) The RESUME statement. The RESUME statement is used
to continue execution of the BASIC program after the error
recovery procedure has been performed. The user has three
options. The user may RESUME execution at the statement
that caused the error, at the statement after the one that
caused the error or at some other line. To RESUME execution
at the statement which caused the error, the user should
use:

RESUME
or

RESUME 0
To RESUME execution at the statement immediately after the
one which caused the error, the user should use:

RESUME NEXT
To RESUME execution at a line dfferent than the one where
the error occurred, use:

RESUME Cline number>
Where <line number> is not equal to zero.

6) Error Routine Example. The following example shows
how a simple error trapping subroutine operates.

1977 Page 39

100 ON ERROR GOTO 500
200 INPUT "WHAT ARE THE NUMBERS TO DIVIDE";X,Y
210 Z=X/Y
220 PRINT "QUOTIENT IS";Z
230 GOTO 200
500 IF ERR=11 AND ERL=210 THEN 520
510 ON ERROR GOTO 0
520 PRINT "YOU CANT HAVE A DIVISOR OF ZERO!"
530 RESUME 200

7) The ERROR statement. In order to force branching to
an error trapping routine, an ERROR statement has been
provided. The primary use of the ERROR statement is to
allow the user to define his own error codes which can then
conveniently be handled by a centralized error trap routine
as described above. The format of the ERROR statement is:

ERROR <integer expression>
When defining error codes, values should be picked which are
greater than the ones used by Altair BASIC. Since more
error messages may be added to Altair BASIC, user-defined
error codes should be assigned the highest possible numbers
to assure future compatibility. If the <numeric expression>
used in an ERROR statement is less than zero or greater than
255 decimal, an ILLEGAL FUNCTION CALL error will occur. Of
course, the ERROR statement may also be used to force SYNTAX
or other standard Altair BASIC errors. Use of an ERROR
statement to force printout of an error message for which no
error text is defined will cause an UNPRINTABLE ERROR
message to be printed out.

5-2. Extended Operators.
Two operators are provided that are exclusive to the

Extended and Disk versions.
a. Integer Division. Integer division, denoted by \

(backslash), forces its arguments to integer form and
truncates the quotient to an integer. More precisely:

A\B= FIX(INT(A)/INT(B))
Its precedence is just after multiplication and floating
point divison. Integer division is approximately eight
times as fast as standard floating point division.

