
J.

\

© Intel Corp., 1975 Rev. B



This manual describes the assembly language format, and how to write assembly language

programs for the Intel 8080 microprocessor. Detailed information on the operation of

specific assemblers is available in the Operator's Manual and Installation Guide for each
specific assembler.

Rev. B



TERMS

Address

Bit

Byte

Instruction

Object Program

Program

Source Program

System Program

User Program

Word

nnnnB

nnnnD

nnnnO

nnnnQ

nnnnH

DESCRIPTION

A 16-bit number assigned to a memory location corresponding to its sequen
tial position.

The smallest unit of information which can be represented. (A bit may be in
one of two states, represented by the binary digits 0 or 1).

A group of 8 contiguous bits occupying a single memory location.

The smallest single operation that the computer can be directed to execute.

A program which can be loaded directly into the computer's memory and
which requires no alteration before execution. An object program is usually
on paper tape. and is produced by assembling (or compiling) a source pro
gram. Instructions are represented by binary machine code in an object
program.

A sequence of instructions which, taken as a group. allow the computer to
accomplish a desired task.

A program which is readable by a programmer but which must be transformed
into object program format before it can be loaded into the computer and
executed. Instructions in an assembly language source program are represented
by their assembly language mnemonic.

A program written to help in the process of creating user programs.

A program written by the user to make the computer perform any desired task.

A group of 16 contiguous bits occupying two successive memory locations.

nnnn represents a number in binary format.

nnnn represents a number in decimal format.

nnnn repres<;lnts a number in octal format.

nnnn represents a number in octal format.

nnnn represents a number in hexadecimal format.

A representation of a byte in memory. Bits which are fixed as 0 or 1 are in
dicated by 0 or 1; bits which may be either 0 or 1 in different circumstances
are represented by letters; thus rp represents a three-bit field which contains
one of the eight possible combinations of zeroes and ones.

ii



INTRODUCTION V CMC Complement Carry 14

CHAPTER 1 SINGLE REGISTER INSTRUCTIONS 14

COMPUTER ORGANIZATION 1 INR Increment Register or Memory 15

WORKING REGISTERS 1 DCR Decrement Register or Memory 15

MEMORY 2 CMA Complement Accumulator 15

PROGRAM COUNTER 2 DAA Decimal Adjust Accumulator 15

STACK POINTER 2 NOP INSTRUCTION 16

INPUT/OUTPUT 2 DATA TRANSFER INSTRUCTIONS 16

COMPUTER PROGRAM REPRESENTATION MOV Instruction 16

IN MEMORY 2 STAX Store Accumulator 17

'---- MEMORY ADDRESSING 3 LDAX Load Accumulator 17

Direct Addressing 3 REGISTER OR MEMORY TO ACCUMULATOR

Register Pair Addressing 3 INSTRUCTIONS 17

Stack Pointer Addressing 3 ADD Add Register or Memory to Accumulator 17

Immediate Addressing 4 ADC Add Register or Memory to Accumulator

Subroutines and Use of the Stack With Carry 18
for Addressing 4 SUB Subtract Register or Memory

CONDITION BITS 5 From Accumulator 18
Carry Bit 5 SBB Subtract Register or Memory From
Auxiliary Carry Bit 6 Accumulator With Borrow 19
Sign Bit 6 ANA Logical and Register or Memory
Zero Bit 6 With Accumulator 19
Parity Bit 6 XRA Logical Exclusive-Or Register or Memory

CHAPTER 2 With Accumulator (Zero Accumulator) 19

THE 8080 INSTRUCTION SET 7 ORA Logical or Register or Memory With

~ ASSEMBLY LANGUAGE 7
Accumulator 20

How Assembly Language is Used 7
CMP Compare Register or Memory With

Statement Syntax 8
Accumulator 20

Label Field 8 ROTATE ACCUMULATOR INSTRUCTIONS 21

Code Field 9 RLC Rotate Accumulator Left 21
Operand Field 9 RRC Rotate Accumulator Right 21
Comment Field 12 RAL Rotate Accumulator Left Through Carry 22

DATA STATEMENTS 12 RAR Rotate Accumulator Right Through Carry 22
Two's Complement Representation 12 REGISTER PAIR INSTRUCTIONS 22
DB Define Byte(s) of Data 13 PUSH Push Data Onto Stack 22
DW Define Word (Two Bytes) of Data 14 POP Pop Data Off Stack 23

~ DS Define Storage (Bytes) 14 DAD Double Add 24
CARRY BIT INSTRUCTIONS 14 INX Increment Register Pair 24

STC Set Carry 14 DCX Decrement Register Pair 24

iii



XCHG Exchange Registers 24 HLT HALT INSTRUCTION 39

XTH L Exchange Stack 25 PSEUDO-INSTRUCTIONS 39

SPH L Load SP From Hand L 25 ORG Origin 39

IMMEDIATE INSTRUCTIONS 25 EQU Equate 40
LXI Load Register Pair Immediate 26 SET 40
MVI Move Immediate Data 26 END End of Assembly 41
AD I Add Immediate to Accumulator 27 IF AND ENOl F Conditional Assembly 41
ACI Add Immediate to Accumulator With Carry 27 MACRO AND ENDM Macro Definition 41
SUI Subtract Immediate From Accumulator 27 CHAPTER 3
SBI Subtract Immediate From Accumulator PROGRAMMING WITH MACROS 43
With Borrow 28 WHAT ARE MACROS? 43
ANI And Immediate With Accumulator 28 MACRO TERMS AND USE 44
XRI Exclusive-Or Immediate With Accumulator 29 Macro Definition 44
ORI Or Immediate With Accumulator 29 Macro Reference or Call 45
CPI Compare Immediate With Accumulator 29 Macro Expansion 45

DIRECT ADDRESSING INSTRUCTIONS 30 Scope of Labels and Names Within Macros 46
STA Store Accumulator Direct 30 Macro Parameter Substitution 46
LOA Load Accumulator Direct 30 REASONS FOR USI NG MACROS 47
SHLD Store Hand L Direct 30 USEFUL MACROS 47
LHLD Load Hand L Direct 31 Load Indirect Macro 47

JUMP INSTRUCTIONS 31 Other Indirect Addressing Macros 48
PCH L Load Program Counter 31 Create Indexed Address Macro 48
JMP Jump 32
JC Jump If Carry 32 CHAPTER 4

JNC Jump If No Carry 32 PROGRAMMING TECHNIQUES 49

JZ Jump If Zero 32 BRANCH TABLES PSEUDO-SUBROUTINE 49

JNZ Jump If Not Zero 33 SUBROUTINES 50

JM Jump If Minus 33 Transferring Data to Subroutines 51

JP Jump If Positive 33 SOFTWARE MULTIPLY AND DIVIDE 53

MULTIBYTE ADDITION AND SUBTRACTION 55 ~

JPE Jump If Parity Even 33

JPO Jump If Parity Odd 33 DECIMAL ADDITION 56

CALL SUBROUTINE INSTRUCTIONS 34 DECIMAL SUBTRACTION 57

CALL Call 34 ALTERI NG MACRO EXPANSIONS 58

CC Call If Carry 34 CHAPTER 5

CNC Call If No Carry 34 INTERRUPTS 59

CZ Call If Zero 35 WRITING INTERRUPT SUBROUTINES 60

CNZ Call If Not Zero 35 APPENDIX A
CM Call If Minus 35 INSTRUCTION SUMMARY VI
CP Call If Plus 35

CPE Call If Parity Even 35 APPENDIX B

CPO Call If Parity Odd 35 INSTRUCTION EXECUTION TIMES AND

RETURN FROM SUBROUTINE INSTRUCTIONS 35
BIT PATTERNS XVI

RET Return 36 APPENDIX C

RN Return If Carry 36 ASCII TABLE XX
RNC Return If No Carry 36 APPENDIX 0
RZ Return If Zero 36 BINARY-DECIMAL-HEXADECIMAL
RNZ Return If Not Zero 36 CONVERSION TABLES XXII
RM Return If Minus 37
RP Return If Plus 37
RPE Return If Parity Even 37
RPO Return If Parity Odd 37

RST INSTRUCTION 37 LIST OF FIGURES
INTERRUPT FLIP-FLOP INSTRUCTIONS 38

EI Enable Interrupts 38 Automatic Advance of the Program

01 Disable Interrupts 38 Cou nter as Instructions are Executed 2 " .--/

INPUT/OUTPUT INSTRUCTIONS 38 Assembler Program Converts Assembly
IN Input 38 Language Source Program to Hexadecimal
OUT Output 39 Object Program 8

iv



This manual has been written to help the reader pro
gram the INTE L 8080 microcomputer in assembly language.
Accordingly, this manual assumes that the reader has a good
understanding of logic, but may be completely unfamiliar
with programming concepts.

For those readers who do understand programming
concepts, several features of the INTEL 8080 microcom
puter are described below. They include:

• 8-bit parallel CPU on a single chip

• 78 instructions, including extensive memory refer
encing, flexible jump-on-condition capability, and
binary and decimal arithmetic modes

• Direct addressing for 65,536 bytes of memory

• Fully programmable stacks, allowing unlimited

v

subroutine nesting and full interrupt handling
capability

• Seven 8-bit registers

There are two ways in which programs for the 8080
may be assembled; either via the resident assembler or the

cross assembler. The resident assembler is one of several sys
tem programs available to the user which run on the 8080.
The cross assembler runs on any computer having a FO R
TRAN compiler whose word size is 32 bits or greater, and
generates programs which run on the 8080.

The experienced programmer should note that the
assembly language has a macro capabi lity which allows users
to tailor the assembly language to individual needs.



This section provides the programmer with a func

tional overview of the 8080. Information is presented in this
section at a level that provides a programmer with necessary
background in order to write efficient programs.

To the programmer, the computer is represented as
consisting of the following parts:

These seven working registers are numbered and ref
erenced via the integers 0, 1,2,3,4,5, and 7; by convention,
these registers may also be accessed via the letters B, C, D,
E, H, L, and A (for the accumulator), respectively.

Some 8080 operations reference the working registers
in pairs referenced by the letters B, D, Hand PSW. These
correspondences are shown as follows:

(1) Seven working registers in which all data operations
occur, and which provide one means for addressing
memory.

(2) Memory, which may hold program instructions or data
and which must be addressed location by location in
order to access stored information.

Register Pair

B
D
H

PSW

Registers Referenced

Band C (0 and 1)

D and E (2 and 3)
Hand L (4 and 5)
See below

(3) The program counter, whose contents indicate the
next program instruction to be executed.

(4) The stack pointer, a register which enables various
portions of memory to be used as stacks. These in
turn facilitate execution of subroutines and handling
of interrupts as described later.

(5) Input/Output, which is the interface between a pro
gram and the outside world.

.__ WORKING REGISTERS

The 8080 provides the programmer with an 8-bit ac
cumulator and six additional 8-bit "scratchpad" registers.

Register pair PSW (Program Status Word) refers to register
A (7) and a special byte which reflects the current status of
the machine flags. This byte is described in detail in
Chapter 2.

MEMORY

The 8080 can be used with read only memory, pro
grammable read only memory and read/write memory. A
program can cause data to be read from any type of memory,
but can only cause data to be written into read/write
memory .

The programmer visualizes memory as a sequence of
bytes, each of which may store 8 bits (represented by two
hexadecimal digits). Up to 65,536 bytes of memory may be

Rev. B



has been selected to represent the instruction RAR (rotate
the contents of the accumulator right through carry); thus,
the value 1FH stored in a memory byte could either repre
sent the instruction RAR, or it could represent the data
value 1 FH. It is up to the logic of a program to insure that
data is not misinterpreted as an instruction code, but this is
simply done as follows:

Every program has a starting memory address, which
is the memory address of the byte holding the first instruc
tion to be executed. Before the first instruction is executed,
the program counter will automatically be advanced to ad
dress the next instruction to be executed, and th is procedu re
will be repeated for every instruction in the program. 8080
instructions may require 1, 2, or 3 bytes to encode an in
struction; in each case the program counter is automatically
advanced to the start of the next instruction, as illustrated
in Figure 1-1.

present, and an individual memory byte is addressed by its
sequential number from 0 to 65,535D=FFFFH, the largest
number which can be represented by 16 bits.

The bits stored in a memory byte may represent the
encoded form of an instruction or may be data, as described
in Chapter 2 in the section on Data Statements.

PROGRAM COUNTER

The program counter is a 16 bit register wh ich is ac
cessible to the programmer and whose contents indicate the
address of the next instruction to be executed as described
in this chapter under Computer Program Representation in
Memory.

STACK POINTER

A stack is an area of memory set aside by the pro
grammer in which data or addresses are stored and retrieved
by stack operations. Stack operations are performed by
several of the 8080 instructions, and facilitate execution of
subroutines and handling of program interrupts. The pro
grammer specifies which addresses the stack operations will
operate upon via a special accessible 16-bit register called
the stack pointer.

INPUT/OUTPUT

To the 8080, the outside world consists of up to 256
input devices and 256 output devices. Each device commu
nicates with the 8080 via data bytes sent to or received

from the accumulator, and each device is assigned a number
from 0 to 255 which is not under control of the programmer.
The instructions which perform these data transmissions are
described in Chapter 2 under Input/Output Instructions.

COMPUTER PROGRAM REPRESENTATION
IN MEMORY

Memory Instruction
Address Number

0212

}0213
2

0214
0215 3

0216

}0217 4
0218
0219 5
021A

I
6

021B
021C
0210 7

021E
021F 8
0220 9
0221 10

Program Counter
Contents

0213
0215

0216
0219

021B

021C
021F

0220
0221
0222

A computer program consists of a sequence of instruc
tions. Each instruction enables an elementary operation such
as the movement of a data byte, an arithmetic or logical
operation on a data byte, or a change in instruction execu
tion sequence. Instructions are described individually in
Chapter 2.

A program will be stored in memory as a sequence of
bits which represent the instructions of the program, and
which we will represent via hexadecimal digits. The memory
address of the next instruction to be executed is held in the
program counter. Just before each instruction is executed,
the program counter is advanced to the address of the next
sequential instruction. Program execution proceeds sequen
tially unless a transfer-of-eontrol instruction (jump, call, or
return) is executed, which causes the program counter to be
set to a specified address. Execution then continues sequen
tially from this new address in memory.

Upon examining the contents of a memory byte, there
is no way of telling whether the byte contains an encoded
instruction or data. For example, the hexadecimal code 1 FH

2

Figure 1-1. Automatic Advance of the Program Counter
as Instructions Are Executed

In order to avoid errors, the programmer must be sure
that a data byte does not follow an instruction when another
instruction is expected. Referring to Figure 1-1, an instruc
tion is expected in byte 021 FH, since instruction 8 is to be
executed after instruction 7. If byte 021 FH held data, the
program would not execute correctly. Therefore, when
writing a program, do not store data in between adjacent
instructions that are to be executed consecutively.

NOTE: If a program stores data into a location, that loca
tion should not normally appear among any pro
gram instructions. This is because user programs
are (normally) executed from read-only memory,
into which data cannot be stored.

A class of instructions (referred to as transfer-of-eon
trol instructions) cause program execution to branch to an
instruction that may be anywhere in memory. The memory

Rev. B



which will load the accumulator with the contents of mem

ory byte 1 F2A would appear as follows:

7E

address specified by the transfer of control instruction must

be the address of another instruction; if it is the address of a

memory byte holding data, the program will not execute
correctly. For example, referring to Figure 1-1, say instruc

tion 4 specifies a jump to memory byte 021 FH, and say

instructions 5,6, and 7 are replaced by data; then following

execution of instruction 4, the program would execute cor

rectly. But if, in error, instruction 4 specifies a jump to
memory byte 021 EH, an error would result, since this byte

now holds data. Even if instructions 5, 6, and 7 were not
replaced by data, a jump to memory byte 021 EH would

cause an error, since this is not the first byte of the

instruction.

Upon reading Chapter 2, you will see that it is easy to

avoid writing an assembly language program with jump in

structions that have erroneous memory addresses. Informa
tion on this subject is given rather to help the programmer
who is debugging programs by entering hexadecimal codes

directly into memory.

MEMORY ADDRESSING

Memory

Instructi 0 n
being executed -+

1------1

Registers

1F

2A

B

C

D

E

H

L

A

By now it will have become apparent that addressing
specific memory bytes constitutes an important part of any

computer program; there are a number of ways in which this

can be done, as described in the following subsections.

Direct Addressing

With direct addressing, an instruction suppl ies all exact

memory address.

The instruction:

"Load the contents of memory address 1 F2A into

the accumulator"

is an example of an instruction using direct addressing, 1F2A

being the direct address.

This would appear in memory as follows:

Memory Address Memory

'---

-

In addition, there are two 8080 instructions which

use either the Band C registers or the D and E registers to

address memory. As above, the first register of the pair holds

the most significant 8 bits of the address, while the second

register holds the least significant 8 bits. These instructions,

STAX and LDAX, are described in Chapter 2 under Data

Transfer Instructions.

Stack Pointer Addressing

Memory locations may be addressed via the 16-bit

stack pointer register, as described below.

There are only two stack operations wh ich may be
performed; putting data into a stack is called a push, while

retrieving data from a stack is called a pop.

NOTE: In order for stack push operations to operate,

stacks must be located in read/write memory.

The instruction occupies three memory bytes, the

second and third of which hold the direct address.

Register Pair Addressing

A memory address may be specified by the contents

of a register pair. For almost all 8080 instructions, the Hand
L registers must be used. The H register contains the most
significant 8 bits of the referenced address, and the L register

contains the least significant 8 bits. A one byte instruction

any

any + 1

any + 2

3A
-

2A
-

1F
-

instruction

being executed

3

STACK PUSH OPERATION

16 bits of data are transferred to a memory area

(called a stack) from a register pair or the 16 bit program

counter during any stack push operation. The addresses of

the memory area which is to be accessed during a stack push

operation are determined by using the stack pointer as
follows:

(1) The most significant 8 bits of data are stored at the

memory address one less than the contents of the

stack poi nter.

(2) The least significant 8 bits of data are stored at the
memory address two less than the contents of the

stack poi nter.

(3) The stack pointer is automatically decremented by

two.



For example, suppose that the stack pointer contains
the address 13A6H, register B contains 6AH, and register C
contains 30H. Then a stack push of register pair B would
operate as follows:

I
I

Before Push Memory Address After Push

FF 13A3 FF

FF 13M 30 ~ SP

FF 13A5 6A

SP ~ FF 13A6 FF

B C B C

0 0 0 0

STACK POP OPERATION

16 bits of data are transferred from a memory area
(called a stack) to a register pair or the 16-bit program
counter during any stack pop operation. The addresses of
the memory area which is to be accessed during a stack pop
operation are determined by using the stack pointer as
follows:

(1) The second register of the pair, or the least significant
8 bits of the program counter, are loaded from the
memory address held in the stack pointer.

(2) The first register of the pair, or the most significant
8 bits of the program counter, are loaded from the
memory address one greater than the address held in
the stack pointer.

(3) The stack pointer is automatically incremented by
two.

For example, suppose that the stack pointer contains
the address 1508H, memory location 1508H contains 33H,
and memory location 1509H contains OBH. Then a stack
pop into register pair H would operate as follows:

4

I
I

Before Pop Memory Address After Pop

FF 1507 FF

SP ~ 33 1508 33

OB 1509 OB

FF 150A FF ~ SP

H L H L

0 0 0 0

The programmer loads the stack pointer with any de
sired value by using the LXI instruction described in Chapter
2 under Load Register Pair-Immediate. The programmer
must initialize the stack pointer before performing a stack
operation, or erroneous results will occur.

Immediate Addressing

An immediate instruction is one that contains data.
The following is an example of immediate addressing:

"Load the accumulator with the value 2AH."

The above instruction would be coded in memory as
follows:

Memory

GJ ~ Load accumulator immediate

~ +- Value to be loaded into accumulator

Immediate instructions do not reference memory;
rather they contain data in the memory byte following the
instruction code byte.

Subroutines and Use of the Stack for Addressing

Before understanding the purpose or effectiveness of
the stack, it is necessary to understand the concept of a
subroutine.

Consider a frequently used operation such as multi
plication. The 8080 provides instructions to add one byte
of data to another byte of data, but what if you wish to
multiply these numbers? This will require a number of in
structions to be executed in sequence. It is quite possible
that this routine may be required many times within one
program; to repeat the identical code every time it is needed
is possible, but very wasteful of memory:

Rev. B



I
Memory

I Program
Address Instruction

I
I OC02

"-' Routine OC03 CALL SUBROUTINE
r

OC04 02I
I Program

OC05 OFI
Routine OC06 NEXT INSTRUCTION

I
I
I Program
I OFOOI

Routine OF01
I

OF02 FIRST SUBROUTINEI
etc INSTRUCTION +-

OF03
A more efficient means of accessing the routine would

be to store it once, and find a way of accessing it when
Body of subroutine

needed:

OF4E

OF4F RETURN

Push address of
next instruction
(OC06H) onto

the stack and
branch to

subroutine
starting at
OF02H

Pop return address

(OC06H) off

stack and return

to next instruction

Program

Program ~
Routine+---+

Program /
A frequently accessed routine such as the above is

called a subroutine, and the 8080 provides instructions that

call and return from subroutines.

When a subroutine is executed, the sequence of events
may be depicted as follows:

Main Program

Call instruction~

-;.. Subroutine

Next instruction~
t

The arrows indicate the execution sequence.

When the "Call" instruction is executed, the address
of the "next" instruction (that is, the address held in the

program counter), is pushed onto the stack, and the sub

routine is executed. The last executed instruction of a sub
routine will usually be a "Return Instruction," which pops

~ an address off the stack into the program counter, and thus
causes program execution to continue at the "Next" in
struction as illustrated below:

5

Subroutines may be nested up to any depth limited
only by the amount of memory available for the stack. For

example, the first subroutine could itself call some other

subroutine and so on. An examination of the sequence of

stack pushes and pops will show that the return path will

always be identical to the ;'dll path, even if the same sub

routine is called at more than one level.

CONDITION BITS

Five condition (or status) bits are provided by the

8080 to reflect the results of data operations. All but one

of these bits (the auxiliary carry bit) may be tested by pro

gram instructions which affect subsequent program execu

tion. The descriptions of individual instructions in Chapter
2 specify wh ich condition bits are affected by the execution

of the instruction, and whether the execution of the in

struction is dependent in any way on prior status of con

dition bits.

In the following discussion of condition bits, "setting"

a bit causes its value to be 1, while "resetting" a bit causes

its value to be O.

Carry Bit

The Carry bit is set and reset by certain data opera

tions, and its status can be directly tested by a program.

The operations wh ich affect the Carry bit are addition, sub
traction, rotate, and logical operations. For example, ad
dition of two one-byte numbers can produce a carry out of
the high-order bit:

Bit No. 7 6 5 4 3 2 0

AE= 0 0 0
+ 74= 0 1 1 1 0 1 0 0

122[ 0 0 1 0 0 0 1 0

+ carry-out = 1, sets Carry Bit = 1



An addition operation that results in a carry out of
the high-order bit will set the Carry bit; an addition opera

tion that could have resulted in a carry out but did not will
reset the Carry bit.

NOTE: Addition, subtraction, rotate, and logical opera

tions follow different rules for setting and resetting

the Carry bit. See Chapter 2 under Two's Comple

ment Representation and the individual instruction
descriptions in Chapter 2 for details. The 8080
instructions which use the addition operation are

ADD, ADC, ADJ, ACI, and DAD. The instructions

which use the subtraction operation are SUB, SBB,

SUI, SBI, CMP, and CPI. Rotate operations are

RAL, RAR, R LC, and R RC. Logical operations
are ANA, ORA, XRA, ANI, ORI, and XRI.

Auxiliary Carry Bit

The Auxiliary Carry bit indicates carry out of bit 3.

The state of the Auxiliary Carry bit cannot be directly tested
by a program instruction and is present only to enable one
instruction (DAA, described in Chapter 2) to perform its

function. The following addition will reset the Carry bit and
set the Auxiliary Carry bit:

Bit No. 7 6 5 4 3 2 0

2E= 0 0 0 1 1 0
+ 74= 0 1 1 0 0 0-

A2 1 0 1 0 0 0 1 0

LCarry=o~ Auxiliary Carry=1

The Auxiliary Carry bit will be affected by all ad

dition, subtraction, increment, decrement, and compare
instructions.

Sign Bit

As described in Chapter 2 under Two's Complement
Representation, it is possible to treat a byte of data as having

the numerical range -128\0 to +127\0' In this case, by
convention, the 7 bit will always represent the sign of the

number; that is, if the 7 bit is 1, the number is in the range

-128\0 to -1. If bit 7 is 0, the number is in the range 0 to

+127\0'

At the conclusion of certain instructions (as specified
in the instruction description sections of Chapter 2). the

Sign bit will be set to the condition of the most significant
bit of the answer (bit 7).

Zero Bit

This condition bit is set if the result generated by the
execution of certain instructions is zero. The Zero bit is
reset if the result is not zero.

A result that has a carry but a zero answer byte, as

illustrated below, will also set the Zero bit:

Bit No. 7 6 5 4 3 2 0

1 0 1 0 0 1 1 1
+ 0 1 0 1 1 0 0 1

] 0 0 0 0 0 0 0 0
I-

Zero answerCarry ouy
of bit 7.

Zero bit set to 1.

Parity Bit

Byte "parity" is checked after certain operations. The

number of 1 bits in a byte are counted, and if the total is

odd, "odd" parity is flagged; if the total is even, "even"
parity is flagged.

The Parity bit is set to 1 for even parity, and is reset
to 0 for odd parity.



Assuming that registers Hand L contain 14H and

C3H respectively, the program operates as follows:

Byte 1432 specifies that the accumulator is to be
loaded with the contents of byte 14C3.

Bytes 1433 through 1435 specify that execution is to

continue with the instruction starting at byte 14C4.

Bytes 14C4 and 14C5 specify that the L register is to

be loaded with the number 36H.

Byte 14C6 specifies that the contents of the accumu

lator are to be stored in byte 1436.

Now suppose that an error discovered in the program

logic necessitates placing an extra instruction after byte

1432. Program code would have to change as follows:

Hexadec imal

Memory Address Old Code

This section describes the 8080 assembly language

instruction set.

For the reader who understands assembly language
programming, Appendix A provides a complete summary
of the 8080 instructions.

For the reader who is not completely familiar with

assembly language, Chapter 2 describes individual instruc

tions with examples and machine code equivalents.

ASSEMBLY LANGUAGE

How Assembly Language is Used

Upon examining the contents of computer memory,

a program would appear as a sequence of hexadecimal digits,

which are interpreted by the CPU as instruction codes, ad

dresses, or data. It is possible to write a program as a se

quence of digits (just as they appear in memory), but that

is slow and expensive. For example, many instructions
reference memory to address either a data byte or another

instruction:

Hexadecimal
Memory Address

1432 7E

1433 C3

1434 C4

1435 14

1436

1432

1433

1434

1435

1436
1437

14C3

14C4

14C5

14C6
14C7

7E

C3

C4

14

FF

2E

36
77

~Jew Code

tJd
New Instruction

C3

C5
14.

FF

2E

37

77

14C3
14C4

14C5

14C6

FF
2E

36
77

7

Most instructions have been moved and as a result

many must be changed to reflect the new memory ad

dresses of instructions or data. The potential for making

mistakes is very high and is aggravated by the complete un
readability of the program.

Writing programs in assembly language is the first and

most significant step towards economical programming; it



p' C'\'iot's a I eadable notation lor instructions, and separates
the pI O!JI ,lin mer 1rom a need to know or specify absolute
1111;'11101'; addl esses.

Assembly language plOgrams are written as a sequence
01 i nstl uct ions wh ich al e converted to executable hexadeci
mal code by a special program called an ASSEMBLER. Use
01 the 8080 assembler is described in its operator's man

ual.

The assembler takes care of the fact that a new in
struction will shift the rest of the program in memory.

Statement Syntax

Assembly language instructions must adhere to a fixed
set of rules as described in this section. An instruction has
four separate and distinct parts or fields.

Field 1 is the LAB EL field. It is a name used to
reference the instruction's address.

Figure 2-1. Assembler Program Converts Assembly
Language Source Program to Object Program

As illustrated in Figure 2-1, the assembly language
program generated by a programmer is called a SOU RCE
PROGRAM. The assembler converts the SOURCE PRO

GRAM into an equivalent OBJECT PROGRAM, which con
sists of a sequence of binary codes that can be loaded into
memory and executed.

For example:

'C' These examples and the ones which follow are in
tended to illustrate how the various fields appear
in complete assembly language statements. It is not
necessary at this point to understand the operations
wh ich the statements perform.

Label Code Operan~

HERE: MVI C,O ; Load the C register with a
THERE: DB 3AH ; Create a one-byte data

; constant

LOOP: ADD E ; Add coo,,,,, of E cog;"" I
to the accumulator

RLC ; Rotate the accumulator left I

NOTE:

Field 2 is the CODE field. It specifies the operation
that is to be performed.

Field 2 is the OPERAND field. It provides any ad
dress or data information needed by the CODE field.

Field 4 is the COMMENT field. It is present for the
programmer's convenience and is ignored by the assembler.
The programmer uses comment fields to describe the opera
tion and thus make the program more readable.

The assembler uses free fields; that is, any number of
blanks may separate fields.

Before describing each field in detail, here are some
general examples:

OBJECT
PROGRAM

Executable
machine
code

-----

77

One Possible
Version of the

Object Progra~

78
~ FE43

CA7C3D
~ is converted

by the
Assembler
to

--J ASSEMBLERI ~
'1 PROGRAM I

LER

A,B

M,A

SOURCE
PROGRAM

Assembly
language
program
written by

II programmer

NOW: MOV
CPI
JZ

LER: MOV

NOW: MOV A,B
(New instruction inserted here)

CPI 'C'
JZ LER

NOTE: In th is and subsequent examples, it is not necessary
to understand the operations of the individual in
structions. They are presented only to illustrate
typical assembly language statements. Individual
:nstluctions are described later in this chapter.

Now if a new instruction must be added, only one
change :s required. Even the reader who is not yet familiar
with assembly language will see how simple the addition is:

LABEL:

F14 F:

@HERE:

7ZERO:

Label Field

This is an optional field, which, if present, may be
from 1 to 5 characters long. The first character of the label

must be a letter of the alphabet or one of the special
characters @ (at sign) or ? (question mark). A colo:1 (: l must
follow the last character. (The operation codes, pseudo
instruction names, and register names are specially defined
within the assembler and may not be used as labels. Opera
tion codes and pseudo-instructions are given later in this
chapter and Appendix A.

Here are some examples of valid label fields:

M,A i____________________--1
MOVLER

8



Since labels serve as instruction addresses, they cannot

be duplicated. For example, the sequence:

Here are some invalid label fields:

123: begins with a decimal digit

LABEL is not followed by a colon

ADD: is an operation code

END: is a pseudo-instruction

The following label has more than five characters;
only the first five will be recognized:

INSTRUCTION: will be read as INSTR:

OPERAND FIELD INFORMATION

There are four types of information [(a) through (d)

below) that may be requested as items of an operand field,
and the information may be specified in nine ways [( 1)

through (9) below), as summarized in the following table,

and described in detail in the subsequent examples.

Ways of specifying

(1) Hexadecimal Data

(2) Decimal Data

(3) Octal Data

(4) Binary Data

(5) Program Counter ($)

(6) ASCII Constant

(7) Labels assigned values

(8) Labels of instructions

(9) Expressions

Information required

(a) Register

(b) Register Pair

(c) Immediate Data

(d) 16-bit Memory AddressTHERE

SUB

C,D

JMP

MOV

CALL

THERE:

HERE:

THERE:

-

is ambiguous; the assembler cannot determine which ad

dress is to be referenced by the JMP instruction.

One instruction may have more than one label, how
ever. The following sequence is valid:

LOOP1 :

LOOP2: MOV C,D

; First label

; Second label

The nine ways of specifying information are as follows:

(1) Hexadecimal data. Each hexadecimal number must

be followed by a letter 'H' and must begin with a

numeric digit (0-9),

Example:

JMP LOOP1
Label Comment

JMP LOOP2

Each JMP instruction wi II cause program control to

be transferred to the same MOV instruction.

HERE: MVI C,OBAH; Load register C with the

; hexadecimal number BA

Code Field

This field contains a code which identifies the ma
chine operation (add, subtract, jump, etc.) to be performed:

hence the term operation code or op code. The instructions

described later in this chapter are each identified by a

mnemonic label which must appear in the code field. For
example, since the "jump" instruction is identified by the

letters "JMP," these letters must appear in the code field to

identify the instruction as "jump."

There must be at least one space following the code

field. Thus,

(2)

(3)

Decimal data. Each decimal number may optionally

be followed by the letter 'D: or may stand alone.

Example:

Label Code Operand Comment

ABC: MVI E,105 ; Load register Ewith 105

Octal data. Each octal number must be followed by

one of the letters '0' or 'Q.'

HERE: JMP THERE Example:

is legal, but:

HERE JMPTHERE Label Comment

is illegal.

Operand Field

LABEL: MVI A,nO ; Load the accumulator with

; the octal number 72

This field contains information used in conjunction
with the code field to define precisely the operation to be

performed by the instruction. Depending upon the code
field, the operand field may be absent or may consist of one
item or two items separated by a comma.

(4) Binary data. Each binary number must be followed
by the letter 'B.'

Example:

9



NOW: MVI 10B,11110110B ; Load register two
; (the 0 register) with

;OF6H

JUMP: JMP 0010111011111010B ;Jumpto

; memory

; address 2EFA

Labels that appear in the label field of another

instruction.

Label Code Operand Comment

(8)

Label

A1 :
A2:
A3:

Code

MVI
MVI
MVI

Operand

0, VALUE
2,9FH
2, VALUE

Example:

(5) The current program counter. This is specified as the

character '$' and is equal to the address of the current

instruction.

Example:

Label

HERE:

Code

JMP

Operand Comment

THERE ; Jump to instruction

; at THERE

Label

GO:

Code

JMP

THERE: MVI D,9FH

The instruction above causes program control to be
transferred to the address 6 bytes beyond where the

JMP instruction is loaded.

CHAR: MVI E:*' ; Load the E register with the

; eight-bit ASCII representa-

; tion of an asterisk

(6) An ASCII constant. This is one or more ASCII char

acters enclosed in single quotes. Two successive single

quotes must be used to represent one single quote

within an ASCII constant. Appendix 0 contains a list
of legal ASCII characters and their hexadecimal
representations.

(7) Labels that have been assigned a numer ic val ue by the

assembler. The following assignments are built into

the assembler and are therefore always active:

B assigned to 0 representing register B
C " 1 C

o " 2 0
E " 3 E
H "4 H
L " 5 L
M " 6 a memory reference

A " 7 register A

Example:

Suppose VALUE has been equated to the hexa
decimal number 9FH. Then the following instruc~

tions all load the 0 register with 9FH:

(9) Arithmetic and logical expressions involving data types

(1) to (8) above connected by the arithmetic opera
tors (+) (addition), - (unary minus and subtraction),
* (multiplication), / (division), MOD (modulo), the

logical operators NOT, AND, OR, XOR, SHR (shift

right), SHL (shift left), and left and right parentheses.

All operators treat their arguments as 15-bit quantities,
and generate 16-bit quantities as their result.

The operator + produces the arithmetic sum of its
operands.

The operator - produces the arithmetic difference of

its operands when used as subtraction, or the arithmetic

negative of its operand when used as unary minus.

The operator * produces the arithmetic product of its

operands.

The operator / produces the arithmetic integer quo
tient of its operands, discarding any remainder.

The operator MOD produces the integer remainder

obtained by dividing the first operand by the second.

The operator NOT complements each bit of its
operand.

The operator AND produces the bit-by-bit logical
AND of its operands.

The operator OR produces the bit-by-bit logical OR

of its operands.

The operator XO R produces the bit-by-bit logical
EXCLUSIVE-OR of its operands.

The SH Rand SH L operators are Iinear shifts which

shift their first operands right or left, respectively, by the

number of bit positions specified by their second operands.

Zeros are sh ifted into the high-order or low-order bits, re
spectively, of their first operands.

The programmer must insure that the result generated
by any operation fits the requirements of the operation
being coded. For example, the second operand of an MVI

Comment

Example:

Label Code Operand

10



instruction must be an 8-bit value.

Therefore the instruction:

MVI, H,NOT 0

is invalid, since NOT 0 produces the 16-bit hexadecimal

number FFFF. However, the instruction:

MVI, H,NOT 0 AND OFFH

is valid, since the most significant 8 bits of the result are

insured to be 0, and the result can therefore be represented
in 8 bits.

NOTE: An instruction in parentheses is a legal expression

of an optional field. Its value is the encoding of

the instruction.

Examples:

(34+64)/2=49 into the D register.

The operators MOD, SHL, SHR, NOT, AND, OR,

and XOR must be separated from their operands by at least
one blank. Thus the instruction:

MVI C, VALUE ANDOFH

is invalid.

Using some or all of the above nine data specifications,
the following four types of information may be requested:

(a) A register (or code indicating memory reference) to

serve as the source or destination in a data operation

methods 1, 2,3,4, 7, or 9 may be used to specify the

register or memory reference, but the specifications

must finally evaluate to one of the numbers 0-7 as
follows:

The above instruction loads the hexadecimal number
2EH (16-bit address of HERE shifted right 8 bits) into the
C register.

The above instruction will load the value 34+ (64/2)

= 34+32 = 66 into the D register.

Label Code

HERE: MVI

Label

NEXT:

Label

INS:

Operand

C, HERE SHR 8

Code

MVI

Code

DB

Arbitrary

Memory Address

2E1A

Operan~

D, 34+4 OH/2

Qeerand

(ADD C)

Value

o
1
2
3
4
5
6
7

Example:

Label

INSl :

INS2:
INS3:

Code

MVI

MVI

MVI

Registe':.

B
C

D
E
H
L
Memory Reference

A (accumulator)

Operand

REG4,2EH

4H,2EH

812,2EH

Assuming REG4 has been equated to 4, all the above

instructions will load the value 2EH into register 4 (the H
register) .

A register pair to serve as the source or destination in

a data operation. Register pairs are specified as follows:

The above instruction defines a byte of value 81 H
(the encoding of an ADD C instruction) at location INS.

Operators cause expressions to be evaluated in the
following order:

1. Parenthesized expressions

2. *.IM, MOD, SHL, SHR

3. +, - (unary and binary)

4. NOT
5. AND

6. OR, XOR

In the case of parenthesized expressions, the most
deeply parenthesized expressions are evaluated first:

Example:

The instruction:

MVI D, (34+40H)/2

will load the value

11

(b)

Specification

B
D
H
PSW

SP

Register Pair

Registers Band C

Registers D and E

Registers Hand L

One byte indicating the state of the

condition bits, and Register A (see
Sections 4.9.1 and 4.9.2)
The 16-bit stack pointer register



NOTE: The binary value representing each register pair

varies from instruction to instruction. Therefore,
the programmer should always specify a register
pair by its alphabetic designation.

Example:

Label Code

PUSH

INX

Operand

D

SP

Comment

; Push registers D and

; E onto stack

; Increment 16-bit

; number in the stack
; pointer ____.-.J

DATA STATEMENTS

This section describes ways in which data can be
specified in and interpreted by a program. Any 8-bit byte

contains one of the 256 possible combinations of zeros and

ones. Any particular combination may be interpreted in

various ways. For instance, the code 1FH may be interpreted
as a machine instruction (Rotate Accumulator Right

Through Carry), as a hexadecimal value 1FH=31 D, or merely
as the bit pattern 000011111.

Arithmetic instructions assume that the data bytes up

on which they operate are in a special format called "two's

complement," and the operations performed on these bytes
are called "two's complement arithmetic."

take:
Here are some examples of the form DATA could

ADDR AND OFFH (where ADDR is a 16-bit address)

127

(c) Immediate data, to be used directly as a data item.

Example: Using two's complement notation for binary numbers,

any subtraction operation becomes a sequence of bit com

plementations and additions. Therefore, fewer circuits need
be built to perform subtraction.

Two's Complement Representation

When a byte is interpreted as a signed two's comple

ment number, the low-order 7 bits supply the magnitude of

the number, while the high-order bit is interpreted as the

sign of the number (0 for positive numbers, 1 for negative).

The range of positive numbers that can be represented

in signed two's complement notation is, therefore, from 0
to 127:

WHY TWO'S COMPLEMENT?

Comment

; Load the H register with
; the value of DATA

Operan~

H, DATA

~el gode

L_RE: MVI

VALUE (where VALUE has been equated to a

number)
3EH=10/2 (2 AND 2)

o= OOOOOOOOB = OH

1 = 00000001 B = 1H

A comment field may appear alone on a line:

Comment Field

The only rule governing this field is that it must begin
with a semicolon (;).

(d) A 16-bit address, or the label of another instruction in
memory.

Example:

Complement each

bit : 11110101 B
Add one 11110110B

(a) Complement each bit of the number (producing the

so-called one's complement.

(b) Add one to the result, ignoring any carry out of the
high-order bit position.

Example: Produce the two's complement representation
of -10D. Following the rules above:

+10D = 00001010B

126D = 01111110B = 7EH

127D = 01111111B = 7FH

To change the sign of a number represented in two's
complement, the following rules are applied:

MV I C,OADH; This is a commentHERE:

~abel Code Qperand Comment-_._---

i HERE: JMP THERE ; Jump to the instruction

L ; at THERE

JMP 2EADH ; Jump to address 2EAD

; Begin loop here
Therefore, the two's complement representation of

-10D is F6H. (Note that the sign bit is set, indicating a nega
tive number).

12



Example: What is the value of 86H interpreted as a signed

two's complement number? The high-order bit

is set, indicating that this is a negative number.

To obtain its value, again complement each bit

and add one.

86H = 1 0 0 0 0 1 1 0 B

Complement each bit : 0 1 1 1 1 00 1 B

Add one : 0 1 1 1 1 0 1 0 B

Thus, the val ue of 86H is -7 AH = -122D

The range of negative numbers that can be represented

in signed two's complement notation is from -1 to -128.

-1 = 1 1 1 1 1 1 1 1 B = FFH
-2 = 1 1 1 1 1 1 1 0 B = FEH

-127 D = 1 0 0 0 0 0 0 1 B = 81 H

-128D = 1 0000000 B = 80H

To perform the subtraction 1AH-OCH, the following

operations are performed:

Take the two's complement of OCH=F4H

Add the result to the minuend:

1AH = 0 0 0 1 1 0 1 0

+(-OCH) = F4H = 1 1 1 1 0 1 00

00001 1 1 0 = OEH the correct answer

When a byte is interpreted as an unsigned two's com

plement number, its value is considered positive and in the

range 0 to 25510 :

o= 0 0 0 0 0 0 0 0 B = OH

1 =00000001 B=1H

127D=01111111 B=7FH
128D = 1 0 0 0 0 0 0 0 B = 80H

12D = 0 0 0 0 1 1 0 0 = OCH
-15D = 1 1 1 1 000 1 = OF1 H

carry out ~ 0 1 1 1 1 1 1 0 1 = -3D

Since the carry out of bit 7 = 0, indicating that the

answer is negative and in its two's complement form, the

subtract operation will set the Carry bit indicating that a
"borrow" occurred.

NOTE: The 8080 instructions which perform the subtrac

tion operation are SUB, SUI, SBB, SBI, CMP, and

CMI. Although the same result will be obtained by

addition of a complemented number or subtrac

tion of an uncomplemented number, the resulting

Carry bit will be different.

EXAMPLE: If the result -3 is produced by performing an
"ADD" operation on the numbers +12D and

-15D, the Carry bit will be reset; if the same

result is produced by performing a "SUB"

operation on the numbers +12D and +15D,

the Carry bit will be set. Both operations in
dicate that the result is negative; the pro

grammer must be aware wh ich operations set

or reset the Carry bit.

"ADD" +12D and -15D

+12D = 0000 1 1 00

+(-15D) = UJ...lQ.QQ.1
(j] 1 1 1 1 1 1 0 1 = -3D

causes carry to be reset

"SUB" +15D from +12D

+12D =00001100

-(+15Dl = 1 1 1 1 000 1
!j 1 1 1 1 1 1 0 1 = -3 D

causes carry to be set

DB Define Byte(s) of Data

"list" is a list of either:

(1) Arithmetic and logical expressions involving any of

the arithmetic and logical operators, which evaluate
to eight-bit data quantities

(2) Strings of ASCII characters enclosed in quotes

Description: The eight-bit value of each expression, or
the eight-bit ASCII representation of each character is
stored in the next available byte of memory starting with
the byte addressed by "oplab." (The most significant bit of

each ASCII character is always = 0).

DB

~abel

oplab:

Since the carry out of bit 7 = 1, indicating that the
answer is correct and positive, the subtract operation will re
set the Carry bit to O.

Example: Subtract 15D from 12D using unsigned two's

complement arithmetic.

197D = 1 1 000 1 0 1 = C5H
-98D = 1 0 0 1 1 1 1 0 = 9EH

carry out ~ jJ 0 1 1 0 0 0 1 1 = 63H = 99D

255D=11111111 B=FFH

Two's complement arithmetic is still valid. When per

forming an addition operation, the Carry bit is set when the

result is greater than 255D. When performing subtraction,

the Carry bit is reset when the result is positive. If the Carry

bit is set, the result is negative and present in its two's com

plement form. Thus, the Carry bit when set indicates the
occurrence of a "borrow."

Example: Subtract 98D from 197D using unsigned two's
complement arithmetic.

13



Example: Examples:

Instruct ion Assembled Data (hex)

HERE: DB OA3H
WORD1: DB 5*2,2FH-OAH

WORD2: DB 5ABCH SHR 8

STR: DB 'STRINGSpl'
MINUS: DB -03H

A3
OA25

5A
535452494E472031

FD

HERE: OS
OS

10 ; Reserve the next 10 bytes

10H ; Reserve the next 16 bytes

NOTE: In the first example above, the hexadecimal value
A3 must be written as OA3 since hexadecimal num

bers must start with a decimal digit.

CARRY BIT INSTRUCTIONS

This section describes the instructions wh ich operate
directly upon the Carry bit. Instructions in this class occupy

one byte as follows:

OW Define Word (Two Bytes) of Data

"list" is a list of expressions which evaluate to 16 bit data
quantities.

Description: The least significant 8 bits of the expres
sion are stored in the lower address memory byte (oplab),
and the most significant 8 bits are stored in the next higher
addressed byte (oplab +1). This reverse order of the high and

low address bytes is normally the case when storing addres

ses in memory. This statement is usually used to create ad
dress constants for the transfer-of-control instructions; thus
LIST is usually a list of one or more statement labels appear
ing elsewhere in the program.

Examples:

Assume COMP address memory location 3B1 CH and

FILL addresses mprnory location 3EB4H.

Format:

OperandCodeLabel

oplab:

t ~ not used

L STCorCMC

Optional instruction label

LABEL:

The general assembly language format is:

Label Code Operand

OP

STC Set Carry

CMC

~
Description: If the Carry bit = 0, it is set to 1. If the Carry
bit = 1, it is reset to O.

CMC Complement Carry

Condition bits affected: Carry

Assembled

Data (hex)

1C3B

B43E

013CAE3C

Operand

listOW

Code

OW COMP
OW FILL

DW 3C01 H, 3CAEH

Label

oplab:

Format:

Instruction

ADD1:

ADD2:

ADD3:

Format:

Note that in each case, the data are stored with the
least significant 8 bits first.

OS Define Storage (Bytes)

Format:

Label

oplab:

Code Operand

STC

biffJ Ol11 1LJ
Label

oplab:

Code

OS

Operand

exp

Description: The Carry bit is set to one.

Condition bits affected: Carry

"exp" is a single arithmetic or logical expression.

Description: The value of EXP specifies the number
of memory bytes to be reversed for data storage. No data
values are assembled into these bytes: in particular the pro
grammer should not assume that they will be zero, or any
other value. The next instruction will be assembled at mem
ory location oplab+EXP (oplab+l0 or oplab+16 in the
example below).

SINGLE REGISTER INSTRUCTIONS

This section describes instructions which operate on a
single register or memory location. If a memory reference is
specified, the memory byte addressed by the Hand L regis
ters is operated upon. The H register holds the most signifi
cant 8 bits of the address wh ile the L register holds the least
significant 8 bits of the address.

14 Rev. B



illustrate:

OCR M references
registers

Hand L

Memory after

OCR M

CMA

CodeLabel

oplab:

Format:

CMA Complement Accumulator

Memory before

[i;] ~ DCRM

~.~8
indicating ~

memory location 3A7C

Label Code Operan~

oplab: INR reg
~

GlJ reg

I;lJ B,C,D,E,H,L,M o,A

1 0 0

INR Increment Register or Memory

Format:

~ooofor register B
001 for register C

010 for register 0
011 for register E

100 for register H
101 for regi ster L

110 for memory ref. M
111 for register A

Description: The specified register or memory byte is
incremented by one.

Condition bits affected: Zero, Sign, Parity, Auxiliary

Carry

Example:

If register C contains 99H, the instruction:

INR C

will cause register C to contai n 9AH

DCR Decrement Register or Memory

Format:

Description: Each bit of the contents of the accumula-

tor is complemented (producing the one's complement).

Condition bits affected: None

Example:

If the accumulator contains 51 H, the instructionCMA
will cause the accumulator to contain OAEH.

Accumulator =01 01 0001 = 51 H

Accumulator = 1 0 1 0 1 1 1 0 = AEH

OperandCode

DAA

Label

oplab:

(1) If the least significant four bits of the accumulator
represents a number greater than 9, or if the Auxil iary

Carry bit is equal to one, the accumulator is incre

mented by six. Otherwise, no incrementing occurs.

(2) If the most significant four bits of the accumulator

now represent a number greater than 9, or if the nor

mal carry bit is equal to one, the most sign ificant four

bits of the accumulator are incremented by six. Other

wise, no incrementing occurs.

If a carry out of the least significant four bits occurs

during Step (1), the Auxiliary Carry bit is set; otherwise it is

reset. Likewise, if a carry out of the most significant four

DAA Decimal Adjust Accumulator

Format:

Description: The eight-bit hexadecimal number in the
accumulator is.adjLls-te(rto-fo~m1:wofo~r-bi1:·bi·~·aQl-COcled-

.. ~, .,----,.._,.•.,., - ,.. _._---_ "-'- -_.-- ----- " - _. --

decimal digits ~_the followin.!Lt~o_ste.Q.p..!()cE!$~_ ,._--~ , - .. , -_., ,-' --

)

Code Operan~

~;eg
..====; B,C,D,E,H,L,M or A

~I reg ~

Label

oplab:

OCR M

t'----- 000 for Register B

001 for register C
010 for register 0
011 for register E
100 for register H

101 for register L

110 for memory ref. M

111 for register A

Description: The specified register or memory byte is
decremented by one.

Condition bits affected: Zero, Sign, Parity, Auxiliary

Carry

will cause memory location 3A7CH to contain 3FH. To

Example:

If the H register contains 3AH, the L register contains

7CH, and memory location 3A7CH contains 40H, the
instruction:

15



Thus, the accumulator will now contain 1, and both

Carry bits will be = 1.

For an example of decimal addition using the DAA
instruction, see Chapter 4.

bits occurs during Step (2). the normal Carry bit is set;
otherwise, it is unaffected:

NOTE: This instruction is used when adding decimal num
bers. It is the only instruction whose operation is
affected by the Auxiliary Carry bit.

Condition bits affected: Zero, Sign, Parity, Carry,
Auxiliary Carry

Example:

Suppose the accumulator contains 9BH, and both
carry bits = O. The DAA instruction will operate as fol(ows:

(1) Since bits 0-3 are greater than 9, add 6 to the accumu
lator. This addition will generate a carry out of the
lower four bits, setting the Auxil iary Carry bit.

Accumulator = 1 0 0 1
+6

Accumulator = 1 0 1 00 0 0 1 = A1H
+6=0110

IJ 00000001

l Carry = 1

src

- or-

ofor STAX

1 for LDAX

~ dst
==:===-::~==

1..-000 for register B
001 for register C
010 for register D
011 for register E
100 for register H
101 for register L
110 for memory reference M
111 for register A

NOTE: dst and src cannot both = 11 OB

L
t t A,B,C,D,E,H,L, or M

(dst and src not
both = M)

Optional instruction label

(b) For the remaining instructions:

~
t 1<-.

ofor register pair B
1 for register pair D

When a memory reference is specified in the MOV in
struction, the addressed location is specified by the Hand L
registers. The L register holds the least significant 8 bits of
the address; the H register holds the most significant 8 bits.

The general assembly language format is:

Label Code Operand

oplab: MOV dst, src

76543210

101 0

76543210

Bit No.

Bit No.

1 0 1 1 = 9BH
01 1 0
0001=A1H
\-

Auxiliary Carry = 1

Since bits 4-7 now are greater than 9, add 6 to these
bits. This addition will generate a carry out of the
upper four bits, setting the Carry bit.

(2)

NOP INSTRUCTIONS

The NOP instruction occupies one byte.

Format:

\

\ "Bor D

STAX or LDAX

Optional instruction label

Label

oplab

Code

NOP

Operand

Label Code

oplab: OP

Operand

rp

MOV Instruction

Format:

Description: No operation occurs. Execution proceeds
with the next sequential instruction.

Condition bits affected: None

DATA TRANSFER INSTRUCTIONS

Label

oplab:

Code Operand

M~dst,src

~ dst I src I

This section describes instructions which transfer data
between registers or between memory and registers.

Instructions in this class occupy one byte as follows:

(a) For the MOV instruction:

Description: One byte of data is moved from the

register specified by src (the source register) to the register
specified by dst (the destination register). The data re
places the contents of the destination register; the source
remains unchanged.

16



Condition bits affected: None

Example 1:

Label Code Operand

MOV

MOV

A,E

0,0

Comment

; Move contents of the E

; register to the A register
; Move contents of the
; 0 register to the 0
; register, i.e., this is a
; null operation

Condition bits affected: None

Example:

If register 0 contains 93H and register E contains
8BH, the instruction:

LDAX 0

will load the accumulator from memory location 938BH.

REGISTER OR MEMORY TO
ACCUMULATOR INSTRUCTIONS

STAX B

LDAX Load Accumulator

STAX Store Accumulator

tO~D for register B

001 for register C
010 for register 0
011 for register E

100 for register H

101 for register L

110 for memory

reference M
111 for register A

reg

Operand

reg

\ '" A,B,C,D,E,H,L, or M

ADD, ADC, SUB, SBB, ANA, XRA, ORA
or CMP\

Label Code

oplab: op

000 for ADD t
001 for ADC

010 for SUB
011 for SBB

100 for ANA

101 for XRA

110forORA

111 for CMP

This section describes the instructions which operate

on the accumulator using a byte fetched from another regis
ter or memory. Instructions in this class occupy one byte as
follows:

Instructions in this class operate on the accumulator

using the byte in the register specified by REG. If a memory

reference is specified, the instructions use the byte in the

memory location addressed by registers Hand L. The H reg

ister holds the most significant 8 bits of the address, while
the L register holds the least significant 8 bits of the address.
The specified byte will remain unchanged by any of the in
structions in this class; the result will replace the contents of
the accumulator.

The general assembly language instruction format is:

OperandCodeLabel

Format:

oplab: ~rp

-
~

NOTE: Any of the null operation instructions MOV X,X
can also be specified as NOP (no-operation).

Example 2:

Assuming that the H register contains 2BH and the L

register contains E9H, the instruction:

MOV M,A

will store the contents of the accumulator at memory loca
tion 2BE9H.

Description: The contents of the accumulator are

stored in the memory location addressed by registers Band
C, or by registers 0 and E.

Condition bits affected: None

Example:

If register B contains 3FH and register C contains
16H, the instruction:

will store the contents of the accumulator at memory loca

tion 3F16H.

..-

Format: Optional instruction label

CodeLabel

oplab:

Operand

LDAX .-./ rp
k'

ADD ADD Register or Memory To Accumulator

Format:

Operand

reg
y--r====

~'---L..re_gL-..J

Label Code

oplab: ADD
-I-

Description: The contents of the memory location

addressed by registers Band C, or by registers 0 and E, re
place the contents of the accumulator.

--
17



If the Carry bit had been one at the beginning of the
example, the following would have occurred:

3DH = 00 1 1 1 1 0 1
42H = 0 1 0000 1 0

CARRY = 1
RESU LT = 1 0 0 0 0 0 0 0 = 80H

Description: The specified byte is added to the con·
tents of the accumulator using two's complement arithmetic.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example 1:

Assume that the D register contains 2EH and the ac
cumulator contains 6CH. Then the instruction:

ADD D

will perform the addition as follows:

2EH = 00101110

6CH = 01101100
9AH = 10011010

Accumulator
Carry
Sign
Zero
Parity
Aux. Carry

80H
o
1

o
o
1

SUB Subtract Register or Memory
From Accumulator

The Zero and Carry bits are reset; the Parity and Sign
bits are set. Since there is a carry out of bit A3 , the Auxiliary
Carry bit is set. The accumulator now contains 9AH.

Example 2:

The instruction:

ADD A

will double the accumulator.

Format:

Label

oplab:

Code

SUB
~

Operand

~reg

ADC C

The results can be summarized as follows:

ADC ADD Register or Memory To Accumulator
With Carry

Format:

will perform the addition as follows:

3DH = 00 1 1 1 1 0 1
42H = 0 1 0 0 0 0 1 0

CARRY = 0
RESULT=01111111=7FH

~........L~_eg.L.1.....J

SUB A

3EH = 0 0 1 1 1 1 1 0
+(-3EH) = 1 1 000001 negate and add one
+ 1 to produce two's

______ complement

carry -+ j] 00000000 Result = 0

Description: The specified byte is subtracted from the
accumulator using two's complement arithmetic.

If there is no carry out of the high-order bit position,
indicating that a borrow occurred, the Carry bit is set;
otherwise it is reset. (Note that this differs from an add op
eration, which resets the carry if no overflow occurs).

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:

Assume that the accumulator contains 3EH. Then the

instruction:

will subtract the accumulator from itself producing a result
of zero as follows:

Since there was a carry out of the high-order bit
position, and this is a subtraction operation, the Carry bit
will be reset.

Since there was a carry out of bit A3 , the Auxiliary
Carry bit will be set.

The Parity and Zero bits will also be set, and the Sign
bit will be reset.

Thus the SUB A instruction can be used to reset the
Carry bit (and zero the accumulator).

Operand

~reg

7FH

o
o
o
o
o

ACD
'"

Code

~........L!r_eg.L.'.....J

Accumulator
Carry
Sign
Zero
Parity
Aux. Carry

Label

oplab:

Description: The specified byte plus the content of
the Carry bit is added to the contents of the accumulator.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:

Assume that register C contains 3DH, the accumulator
contains 42H, and the Carry bit = O. The instruction:

18



SBB Subtract Register or Memory From
Accumulator With Borrow

Description: The Carry bit is internally added to the

contents of the specified byte. This value is then subtracted

from the accumulator using two's complement arithmetic.

This instruction is most useful when performing sub

tractions. It adjusts the result of subtracting two bytes when

a previous subtraction has produced a negative result (a bor

row). For an example of this, see the section on Multibyte

Addition and Subtraction in Chapter 4.

Condition bits affected: Carry, Sign, Zero, Parity,

Auxiliary Carry (see last section for details).

Example:

Assume that register L contains 2, the accumulator
contains 4, and the Carry bit = 1. Then the instruction SBB

L will act as follows:

02H + Carry = 03H
Two's Complement of 03H = 11111101

Adding this to the accumulator procedures:

Accumulator = 04H = 0 0 0 0 0 1 00

11111101

IJ 0000000 1 = 01 H = Result
JC

carry out = 1 causing the Carry bit to be reset

The final result stored in the accumulator is one, caus
ing the Zero bit to be reset. The. Carry bit is reset since this
is a subtract operation and there was a carry out of the high·

order bit position. The Auxiliary Carry bit is set since there

was a carry out of bit A3 . The Parity and the Sign bits are

reset.

reg

Operand

XRA
-¥

Code

~'-_'L.re_gL.1_

Label

oplab:

Format:

Description: The specified byte is EXCLUSIVE-ORed

bit by bit with the contents of the accumulator. The Carry

bit is reset to zero.

Condition bits affected: Carry, Zero, Sign, Parity,

Auxiliary Carry

The EXCLUSIVE-OR function of two bits equals 1 if

and only if the values of the bits are different.

XRA Logical Exclusive-Or Register or Memory
With Accumulator (Zero Accumulator)

will act as follows:

Accumulator = 1 1 1 1 1 1 0 0 = OFCH

C Register =0 0 0 0 1 1 1 1 = OFH

Result in

Accumulator =0 0 0 0 1 1 0 0 = OCH

This particular example guarantees that the high-order
four bits of the accumulator are zero, and the low·order four
bits are unchanged.

Example:

Since any bit ANDed with a zero produces a zero and

any bit ANDed with a one remains unchanged, the AND

function is often used to zero groups of bits.

Assuming that the accumulator contains OFCH and

the C register contains OFH, the instruction:

ANA C

Example 1:

Since any bit EXCLUSIVE-ORed with itself pro

duces zero, the EXCLUSIVE-OR can be used to zero the

accumulator.

Operand

~reg

r==

Code

SBB
-}

~'-..J~,-e_gL.' -J

Label

oplab:

Format:

ANA Logical and Register or Memory
With Accumulator

Description: The specified byte is logically ANDed bit

by bit with the contents of the accumulator. The Carry bit

is reset to zero.

These instructions zero the A, B, and C registers.

Example 2:

Any bit EXCLUSIVE-ORed with a one is comple

mented (0 XOR 1 = 1, 1 XOR 1 = 0).

Therefore if the accumulator contains all ones (OF FH),

the instruction:

Operand

A
B,A

C,A

XRA

MOV

MOV

CodeLabel

Operand

reg
~

;:=:::.=,

Code

ANA
+

Label

oplab:

Format:

'-.-/ The logical AND function of two bits is 1 if and only
if both the bits equal 1.

Condition bits affected: Carry, Zero, Sign, Parity

XRA B

will produce the one's complement of the B register in the

accumulator.

19 Rev. B



ORA C

Description: The specified byte is logically ORed bit
by bit with the contents of the accumulator. The carry bit
is reset to zero.

This particular example guarantees that the low-order
four bits of the accumulator are one, and the high-order four
bits are unchanged.

The logical OR function of two bits equals zero if and
only if both the bits equal zero.

Condition bits affected: Carry, zero, sign, parity

Example:

Since any bit ORed with a one produces a one, and
any bit ORed with a zero remains unchanged, the OR func
tion is often used to set groups of bits to one.

Assuming that register C contains OFH and the accu
mulator contains 33H, the instruction:

Accumulator = 0 0 1 1 00 1 1 = 33H
C Register = 0 0 0 0 1 1 1 1 = OFH
Accumulator = 00 111111 =3FHResult =

acts as follows:

Label Code Operand

LA: MOV A,M ; STAT2 to accumulator
INX H ; Address next location

LB: MOV B,M ; STAT1 to B register
CHNG: XRA B ; EXCLUSIVE-OR

; STAT1 and STAT2
STAT: ANA B ; AND result with STAT1

STAT2: OS
STAT1 : OS

The EXCLUSIVE-OR function provides a quick means
of determining which bits of a word have changed from one
time to another.

Example 3:

Testing for change of status.

Many times a byte is used to hold the status of several
(up to eight) conditions within a program, each bit signify
ing whether a condition is true or false, enabled or disabled,

etc.

Assume that logic elsewhere in the program has read

the status of eight conditions and stored the corresponding
string of eight zeros and ones at STAT1 and at some later
time has read the same conditions and stored the new status
at STAT2. Also assume that the Hand L registers have been
initialized to address location STAT2. The EXCLUSIVE-OR
at CHNG produces a one bit in the accumulator wherever a
condition has changed between STAT1 and STAT2.

For example:

CMP Compare Register or Memory
With Accumulator

Format:

Label Code Operand

oplab: CMP reg
t
~

WliliJ reg II

ORA Logical or Register or Memory With
Accumulator

Since bit 2 is now one, it was set between STAT1 and
STAT2; since bit 5 is zero it is reset.

This shows that the conditions associated with bits 2
and 5 have changed between STAT1 and STAT2. Knowing
this, the program can tell whether these bits were set or re
set by ANDing the result with STAT1.

Bit Number

Accumulator OAH 0 0 0 0 1 0 1 0
+ (-E Register) -5H 1 1 1 1 1 0 1 1

-----IJ 00000 1 0 1 = result

Lcarry = 1, causing the Carry bit to be reset

Description: The specified byte is compared to the
contents of the accumulator. The comparison is performed
by internally subtracting the contents of REG from the ac
cumulator (leaving both unchanged) and setting the condi
tion bits according to the result. In particular, the Zero bit is
set if the quantities are equal, and reset if they are unequal.
Since a subtract operation is performed, the Carry bit will be
set if there is no carry out of bit 7, indicati ng that the
contents of REG are greater than the contents of the accu
mulator, and reset otherwise.

NOTE: If the two quantities to be compared differ in sign,
the sense of the Carry bit is reversed.

Condition bits affected: Carry, Zero, Sign, Parity,

Auxiliary Carry

Example 1:

Assume that the accumulator contains the number
OAH and the E register contains the number 05H. Then
the instruction CMP E performs the following internal

subtractions:Operand

76543210

o 1 0 1 1 100
01111000
00100100

00100100
01011100
00000100

Label

oplab:

STAT1 = 5CH =
STAT2 = 78H =
EXCLUSIVE-OR'

Result
STAT1
AND

Format:

20



RLC

Condition bits affected: Carry

Example:

Assume that the accumulator contains OF2H. Then
the instruction:

Description: The Carry bit is set equal to the high

order bit of the accumulator. The contents of the accumu

lator are rotated one bit position to the left, with the high
order bit being transferred to the low-order bit position of

the accumulator.

Before RLC is executed: Carry Accumulator

o1EEEIiliJiliEJ]
After RLC is executed:

acts as follows:

The accumulator still contains OAH and the E register

still contains 05H; however, the Carry bit is reset and the

zero bit reset, indicating E less than A.

"'--"c Example 2:

If the accumulator had contained the number 2H, the

internal subtraction would have produced the following:

Accumulator 02H aa aa aa 1 a
+ (-E Register) = -5H = 1 1 1 1 1 a 1 1

OJ 1 1 1 1 1 1 a 1 = result

l carry = 0, Carry bit = 1

The Zero bit would be reset and the Carry bit set,

indicating E greater than A.

Example 3:

Assume that the accumulator contains -1 BH. The in
ternal subtraction now produces the following:

Accumulator

+ (-E Register)

-lBH 11100101

= -5H = 1 1 1 1 1 a 1 1

---IJ 11100000

Lcarry = 1, causing carry to be reset

Since the two numbers to be compared differed in

sign, the resetting of the Carry bit now indicates E greater

than A.

~~
Carry = 1 A = OE5H

RRC Rotate Accumulator Right

Format:

ROTATE ACCUMULATOR INSTRUCTIONS Label Code

This section describes the instructions which rotate
'-'

the contents of the accumulator. No memory locations or

other registers are referenced.

Instructions in this class occupy one byte as follows:

oplab: RRC..,

10
1
0

1
0 [;]iliJiJ

t 00 for R LC

01 for RRC

10 for RAL
11 for RAR

Description: The carry bit is set equal to the low-order

bit of the accumulator. The contents of the accumulator are

rotated one bit position to the right, with the low-order bit

being transferred to the high-order bit position of the

accumulator.

Operand

The general assembly language instruction format is:

Label Code

label: op

\

~ +- not used

RLC, RRC, RAL, or RAR

Optional instruction label

Condition bits affected: Carry

Example:

Assume that the accumulator contains OF2H. Then

the instruction:

RRC

acts as follows:

Before RRC is executed: Accumulator Carry

RLC Rotate Accumulator Left

rEEEIiliJiliEJ r0Format:

Label

oplab:

Code

RLC
>l-

~

Operand
After R RC is executed:

~
A = 79H Carry=O

21



RAL Rotate Accumulator Left Through Carry

Format:

rillillEE-Eb
After RAR is executed:

~
A = OB5H

Label

oplab:

Code

RAL
-j.--
~

Operand

Before RAR is executed: Accumulator Carry

Carry=O

Description: The contents of the accumulator are ro
tated one bit position to the left.

The high-order bit of the accumulator replaces the

Carry bit, while the Carry bit replaces the high-order bit of
the accumulator.

Condition bits affected: Carry

Example:

Assume that the accumulator contains OB5H. Then
the instruction:

REGISTER PAl R INSTRUCTIONS

PUSH Push Data Onto Stack

Operand

PUSH rp

~-----/ B,D,H, or PSW

CodeLabel

oplab:

Format:

This section describes instructions which operate on
pairs of registers.

Accumulator

RAL

acts as follows:

Before RAL is executed: Carry

RAR

acts as follows:

Description: The contents of the accumulator are ro
tated one bit position to the right.

'------- always 0

State of auxiliary
Carry bit

In any case, after the data has been saved, the stack
pointer is decremented by two.

Condition bits affected: None

Example 1:

7 6 543 2 1 0

~
State of Sign bit I JJ \ i \ Stato of C,,,y b;t

State of Zero bit L always 1
always 0 State of Parity

bit

~OO for registers Band C
01 for registers D and E
10 for registers Hand L
11 for flags and register A

Description: The contents of the specified register pair
are saved in two bytes of memory indicated by the stack
pointer SP.

The contents of the first register are saved at the mem
ory address one less than the address indicated by the stack
pointer; the contents of the second register are saved at the
address two less than the address indicated by the stack
pointer. If register pair PSW is specified, the first byte of in
formation saved holds the contents of the A register; the
second byte holds the settings of the five condition bits,
i.e., Carry, Zero, Sign, Parity, and Auxiliary Carry. The for
mat of this byte is:

Operand

~
A=6AH

Code

RAR
+

~

Label

oplab:

After RAL is executed: GJ
Carry=1

RAR Rotate Accumulator Right Through Carry

Format:

The low-order bit of the accumulator replaces the
carry bit, while the carry bit replaces the high-order bit of
the accumulator.

Condition bits affected: Carry

Example:

Assume that the accumulator contains 6AH. Then the
instruction:

22 Rev. B



PUSH D

Assume that register D contains 8FH, register E con
tains 9DH, and the stack pointer contains 3A2CH. Then the
instruction:

indicated by the stack pointer is loaded into the second
register of the register pair; the byte of data at the address
one greater than the address indicated by the stack pointer
is loaded into the first register of the pair. If register pair
PSW is specified, the byte of data indicated by the contents
of the stack pointer plus one is used to restore the values of
the five condition bits (Carry, Zero, Sign, Parity, and Aux

iliary Carry) using the format described in the last section.

Example 1:

Assume that memory locations 1239H and 123AH

contain 3DH and 93H, respectively, and that the stack
poi nter conta ins 1239H. Then the instructi on:

POP H

In any case, after the data has been restored, the stack
pointer is incremented by two.

Condition bits affected: If register pair PSW is speci·
fied, Carry, Sign, Zero, Parity, and Auxiliary Carry may be

changed. Otherwise, none are affected.

+- SP

After PUSH

FF

9D

8F

FF

MEMORY

3A29

3A3A

3A2B

3A2C

FF

FF

FF

FF

[

I
HEX

MEMORY ADDRESS

SP -+

Before PUSH

stores the D register at memory address 3A2BH, stores the

E register at memory address 3A2AH, and then decrements
the stack pointer by two, leaving the stack pointer equal to
3A2AH.

D

~
E

~
D

~
E

~

loads register L with the value 3DH from location 1239H,
loads register H with the value 93H from location 123AH,
and increments the stack pointer by two, leaving it equal to
123BH.

Example 2:

Assume that the accumulator contains 1FH, the stack
pointer contains 502AH, the Carry, Zero and Parity bits all
equal 1, and the Sign and Auxiliary Carry bits all equal O.

Then the instruction:

PUSH PSW

stores the accumulator (1FH) at location 5029H, stores the
value 47H, corresponding to the flag settings, at location
5028H, and decrements the stack pointer to the value
5028H.

POP Pop Data Off Stack

Format:

Before POP After POP

HEX
MEMORY ADDRESS MEMORY

~
1238

ISP --+ 3D 1239 3D
93 123A 93
FF 123B FF +- SP

H L H L

ffiJ ITQ] []I] []Q]

Example 2:

Assume that memory locations 2COOH and 2C01 H
contain C3H and FFH respectively, and that the stack
pointer contains 2COOH. Then the instruction:

OperandCode

POP rp

~'B'D'H'DC PSW

~

Label

oplab:

"'---- 00 for registers Band C
01 for registers D and E

10 for registers Hand L
11 for flags and register A

Description: The contents of the specified register pair
are restored from two bytes of memory indicated by the
stack pointer SP. The byte of data at the memory address

POP PSW

will load the accumulator with FFH and set the condition
bits as follows:

C3H= 1 1 0 0 0 0 1 1

S;gn b;t· ': , I I I I ~ Carry bit = 1
Zero bit = 1 ) Parity bit = 0
Aux. Carry bit = 0

23 Rev. B



DAD 8

DAD Double Add

~ 00 for registers 8 and C
01 for registers D and E
10 for registers Hand L
11 for register SP

Description: The 16-bit number in the specified regis
ter pair is added to the 16-bit number held in the Hand L
registers using two's complement arithmetic. The result re
places the contents of the Hand L registers.

Condition bits affected: Carry

Example 1:

Assume that register 8 contains 33H, register C con
tains 9FH, register H contains A1 H, and register L contains
78H. Then the instruction:

Operan<!

rp

/ 'B,D,H, or SP

Code

DCX

Label

oplab:

INX SP

DCX Decrement Register Pair

Format:

will cause register SP to contain OOOOH.

INX D

will cause register D to contain 39H and register E to con
tain OOH.

If the stack pointer SP contains FFFFH, the
instructi on:

Description: The 16-bit number held in the specified
register pair is incremented by one.

Condition 8its affected: None

Example:

If registers D and E contain 38H and FFH respectively,
the instruction:

DAD

Code Operand

...!:£....
~ ~ 8,D,H, or SP

~

Label

oplab:

Format:

performs the following addition:

Registers 8 and C = 339F
+ Registers Hand L = A178

New contents of Hand L = D51 A

Register H now contains D5H and register L now con
tains 1AH. Since no carry out was produced, the Carry bit
is reset = O.

Example 2:

The instruction:

DAD H

'"---- 00 for registers 8 and C
01 for registers D and E
10 for registers Hand L
11 for regi ster SP

Description: The 16-bit number held in the specified
register pair is decremented by one.

Condition bits affected: None

Example:

If register H contains 98H and register L contains OOH,
the instruction:

will double the 16-bit number in the Hand L registers
(which is equivalent to shifting the 16 bits one position to
the left).

DCX H

will cause register H to contain 97H and register L to con
tain FFH.

INX Increment Register Pair

Format:
XCHG Exchange Registers

Format:
Label Code

oplab: XCHG

OperandCodeLabelOperand

INX ...!:£....

/ ~B,D,H,orSP

oplab:

'"---- 00 for registers Band C
01 for registers D and E
10 for registers Hand L
11 for register SP

Description: The 16 bits of data held in the Hand L
registers are exchanged with the 16 bits of data held in the
D and E registers.

Condition bits affected: None

24



Description: The 16 bits of data held in the Hand L
registers replace the contents of the stack pointer SP. The

contents of the Hand L registers are unchanged.

Condition bits affected: None

SPHL Load SP From HAnd LExample:

If register H contains OOH, register L contains FFH,
register D contains 33H and register E contains 55H, the

~

instruction XCHG will perform the following operation:

Before XCHG After XCHG

0 E D E

[ill WJ [QQ] [££]

H L H L

[QQ] [££] []LJ [§§]

Format:

Label

oplab:

Code

SPHL

Operand

XTH L Exchange Stack

Format:

Label

oplab:

Code

XTHL

Operand

Example:

If registers Hand Lcontain 50H and 6CH respectively,
the instruction SPH L will load the stack pointer with the
value 506CH.

IMMEDIATE INSTRUCTIONS

Description: The contents of the L register are ex
changed with the contents of the memory byte whose ad

dress is held in the stack pointer SP. The contents of the H
register are exchanged with the contents of the memory

byte whose address is one greater than that held in the stack
pointer.

Condition bits affected: None

Example:

If register SP contains 10ADH, registers Hand L con

tain OBH and 3CH respectively, and memory locations

1OADH and 1OAEH contain FOH and ODH respectively, the
instruction XTH L will perform the following operation:

Before XTHL After XTHL

HEX
MEMORY ADDRESS MEMORY

~
10AC

mSP ~ FO lOAD 3C ~ SP
OD 10AE 08
FF lOAF FF

~. H L H L

[Q[] [K] [Q§] [ill

25

This section describes instructions which perform op
erations using a byte or bytes of data which are part of the
instruction itself.

Instructions in this class occupy two or three bytes as
follows:

(a) For the LXI data instruction (3 bytes):

~,I~~,d,a~a, I,hi~h, ~a,t~ I
""----00 for registers Band C

01 for registers D and E

10 for registers Hand L
11 for register SP

(b) For the MVI data instruction (2 bytes):

tf]::=,=re::g==~L-L.-L.~d_a.L.t_a-L.--L.-...L..-

"'--- 000 for register B
001 for register C
010 for register D
all for register E
100 for register H
101 for register L
110 for memory ref. M
111 for register A

Rev. B



L
\""--,6-b;1 d.,. q,,"';IY

B,D,H,orSP

Optional instruction label

~,::::=O:::P~~L..-,--,--,-d_aL.ta-,--,--,-_
'---000 for ADI

001 for ACI
010 for SUI
011 for SBI
100 for ANI
101 for XRI
110forORI
111 for CPI

The LXI instruction operates on the register pair
specified by RP using two bytes of immediate data.

The MVI instruction operates on the register specified
by REG using one byte of immediate data. If a memory
reference is specified, the instruction operates on the mem
ory location addressed by registers Hand L. The H register

holds the most significant 8 bits of the address, while the L
register holds the least significant 8 bits of the address.

The remaining instructions in this class operate on the
accumulator using one byte of immediate data. The result
replaces the contents of the accumulator.

The general assembly language instruction format is:

Label Code

oplab: LXI

Operand

rp, data

Format:

Label Code Operand

oplab:~rP..:--da~a \.

~'" ?~t~, I r, I~~t~ ,,''

Description: The third byte of the instruction (the
most significant 8 bits of the 16-bit immediate data) is
loaded into the first register of the specified pair, while the
second byte of the instruction (the least significant 8 bits of
the 16-bit immediate data) is loaded into the second register
of the specified pair. If SP is specified as the register pair, the
second byte of the instruction replaces the least significant
8 bits of the stack pointer, while the third byte of the in
struction replaces the most significant 8 bits of the stack
pointer.

Condition bits affected: None

NOTE: The immediate data for this instruction is a 16-bit
quantity. All other immediate instructions require
an 8-bit data value.

Example 1:

Assume that instruction label STRT refers to memory
location 103H (=259). Then the following instructions
will each load the H register with 01 H and the L register
with 03H:

LXI H,103H
LXI H,259
LXI H,STRT

Example 2:

The following instruction loads the stack pointer with
the value 3ABCH:

-or-

Label Code Operand

oplab: MV I reg, data----
t

L
\"8-b;1 d'" q,,",;,y

A,B,C,D,E,H,L, or M

Optional instruction label

LXI SP,3ABCH

MVI Move Immediate Data

Format:

Label Code Operand

oplab: MVI J reg, dtta_..
A

g,reg,~ data

Description: The byte of immediate data is stored in
the specified register or memory byte.

Condition bits affected: None

Example

-or-

Label Code Operand

oplab: OP data

I
t "'--8-bit data quantity

1
1_-
. ADI,ACI,SUI,SBI,ANI,XRI,ORI,

or CPI

LI-- Optional instruction label

26

Label Code

M1: MVI
M2: MVI
M3: MVI

Operand

H,3CH
L,OF4H
M,OFFH

Assembled Data

26EC
2EF4
36FF



The instructions at M1 loads the H register with the
byte of data at M1 + 1, i.e.,3CH.

Likewise, the instruction at M2 loads the L register
,----,. with OF4H. The instruction at M3 causes the data at M3 + 1

(OFFH) to be stored at memory location 3CF4H. The mem

ory location is obtained by concatenating the contents of

the Hand L registers into a 16-bit address.

NOTE: The instructions at Ml and M2 above could be re

placed by the single instruction:

LXI H, 3CF4H

ADI Add Immediate To Accumulator

Format:

ACI Add Immediate To Accumulator With Carry

Format:

Label Code Operan~

oplab: ACI i/data
I<"

"- ,

~ data ,J
Description: The byte of immediate data is added to

the contents of the accumulator plus the contents of the
carry bit.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:

3E56

CEBE
CE42

Assembled DataOperand

A,56H
-66

66

Label Code

C1: MVI

C2: ACI
C3: ACI

Operand

l<! data

CodeLabel

oplab: ~ADI

~===~::=:::::

~1-~~~d_a....t_a.L-""""...a..-

Description: The byte of immediate data is added to

the contents of the accumulator using two's complement

arithmetic.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

Example:

Assuming that the Carry bit = 0 just before the in

struction at C2 is executed, this instruction will produce the

same result as instruction AD3 in the example of Section
3.10.3.

That is:

Accumulator = 14H
Carry = 1

The instruction at C3 then performs the following

addition:
Label Code Operand Assem bl ed Data

AD1: MVI A,20 3E14
AD2: ADI 66 C642
AD3: ADI -66 C6BE

Accumulator = 14H = 00010100

C3 Immediate Data = 42H = 01000010
Carry bit = 1 1

Result = 01010111=57H

SUI Subtract Immediate From Accumulator
The instruction at AD1 loads the accumulator with

14H. The instruction at AD2 performs the following
addition:

Accumulator = 14H = 00010100

AD2 Immediate Data = 42H = 01000010----
Result= 01010110= 56H = New

accumulator

Format:

Label

oplab:

Code

SUI
k'

The parity bit is set. Other status bits are reset.

The instruction at AD3 restores the original contents

of the accumulator by performing the following addition:

Accumulator = 56H = 01010110

AD3 Immediate Data = OBEH = 10111110

Result = 00010100 = 14H

The Carry, Auxiliary Carry, and Parity bits are set.
The Zero and Sign bits are reset.

Description: The byte of immediate data is subtracted
from the contents of the accumulator using two's comple

ment arithmetic.

Since this is a subtraction operation, the carry bit is
set, indicati ng a borrow, if there is no carry out of the high

order bit position, and reset if there is a carry out.

Condition bits affected: Carry, Sign, Zero, Parity,
Auxiliary Carry

27



SBI Subtract Immediate from Accumulator
With Borrow

Example:

This instruction can be used as the equivalent of the
OCR instruction.

Since there was no carry, and this is a subtract opera

tion, the Carry bit is set, indicating a borrow.

The Zero and Auxiliary Carry bits are also reset,

while the Sign and Parity bits are set.

The MVI instruction loads the accumulator with zero.

The SUI instruction performs the following subtraction:

Accumulator = OH = 00000000

-Sl Immediate Data =-1 H = 11111111 two's complement

Result = 11111111 = -1 H

Immediate Data + Carry =01 H

Two's Complement of 01 H = 11111111

Adding this to the accumulator produces:

Accumulator = OH = 00000000

11111111

r-----lllll111 = -lH = Result

l carry out = 0 causing the Carry bit to be set

The Carry bit is set, indicating a borrow. The Zero and
Auxiliary Carry bits are reset, wh ile the Sign and Parity bits

are set.

If. however, the Carry bit is one, the SBI instruction

will perform the following operation:

Immediate Data + Carry = 02H

Two's Complement of 02H = 11111110

Adding this to the accumulator produces:

Ar.cumulator = OH = 00000000

11111111----
11111110 = -2H = Resu It

L carry out = 0 causing the Carry bit to be set

This time the Carry and sign bits are set, while the

zero, parity, and auxi Iiary Carry bits are reset.

3EOO

0601

Assembled DataOperand

A,O

1

Label Code

MVI

Sl: SUI

Format:

~---'---'--L_d..l-at_a..L1--'-.-L--J

ANI And Immediate With AccumulatorLabel

oplab:

Code

J!'SBI

Operand

""data
A

Format:

Label

oplab:

Code

.,... ANI

Operan<:!

,/ data

The XRA instruction will zero the accumulator (see
example earlier in this chapter). If the Carry bit is zero, the
SBI instruction will then perform the following operation:

Description: The Carry bit is internally added to the

byte of immediate data. This value is then subtracted from

the accumulator using two's complement arithmetic.

This instruction and the SBB instruction are most use

ful when performing multibyte subtractions. For an ex

ample of th is, see the section on Multibyte Addition and

Subtraction in Chapter 4.

Since this is a subtraction operation, the carry bit js

set if there is no carry out of the high-order position, and

reset if there is a carry out.

Condition bits affected: Carry, Sign, Zero, Parity,

Auxiliary Carry

Example:

Condition bits affected: Carry, Zero, Sign, Parity

Example:

79
E60F

Assembled DataOperand

A,C

OFH

Label Code

MOV

Al: ANI

Description: The byte of immediate data is logically
ANDed with the contents of the accumulator. The Carry bit

is reset to zero.

~ data

The contents of the C register are moved to the accu

mulator. The AN I instruction then zeroes the high-order
four bits, leaving the low-order four bits unchanged. The
Zero bit will be set if and only if the low-order four bits

were originally zero.

If the C register contained 3AH, the ANI would per
form the following:

Accumulator = 3AH = 00111010
AND (Al Immediate Data) = OFH = 00001111

Result = 00001010 = OAH

AF

DEOl

Assembled Data

XRA

SBI

Label Code

28



XRI Exclusive-Or Immediate With Accumulator

Format:

Label

oplab:

Code

____ XRI- data
.... j

If the C register contained OB5H, the ORI would per
form the following:

Accumulator=OB5H = 10110101
OR (ORl Immediate data) = OFH = 00001111

Result = 10111111 =OBFH

~---l---lL....-L..d_aL..ta....L.--L-'J CPI Compare Immediate With Accumulator

Format:

Description: The byte of immediate data is compared
to the contents of the accumulator.

The comparison is performed by internally subtract
ing the data from the accumulator using two's complement
arithmetic, leaving the accumulator unchanged but setting
the condition bits by the result.

In particular, the zero bit is set if the quantities are
equal, and reset if they are unequal.

Since a subtract operation is performed, the Carry bit

will be set if there is no carry out of bit 7, indicating the

immediate data is greater than the contents of the accumu·
lator, and reset otherwise.

Label Code

data
;/

.A

CPIoplab:

XRI 81 H

OR I Or Immediate With Accumulator

Description: The byte of immediate data is EXCLU
SIV E-ORed with the contents of the accumulator. The carry
bit is set to zero.

Condition bits affected: Carry, Zero, Sign, Parity

Example:

Since any bit EXCLUSIVE·ORed with a one is com
plemented, and any bit EXCLUSIVE-ORed with a zero is

unchanged, th is instruction can be used to complement spe

cific bits of the accumulator. For instance, the instruction:

will complement the least and most significant bits of the
accumulator, leaving the rest unchanged. If the accumulator
contained 3BH, the process would work as follows:

Accumulator = 3BH = 00111011

XRI Immediate data = 81 H = 10000001
Result = 10111010

~l-..J......J........L.d_a.L.t_a.L.-.L.I.J
Description: The byte of immediate data is logically

ORed with the contents of the accumulator.

The result is stored in the accumulator. The Carry bit
is reset to zero, while the Zero, Sign, and Parity bits are set
according to the result.

Condition bits affected: Carry, Zero, Sign, Parity

Example:

The CPI instruction performs the following operation:

Accumulator = 4AH= 01001010
+(-Immedjate data)= -40H = 11000000

lJ 00001010 = Result

NOTE: If the two quantities to be compared differ in sign,
the sense of the Carry bit is reversed.

Condition bits affected: Carry, Zero, Sign, Parity,
Auxiliary Carry

Example:

3E4A

FE40

-~---l

Assembled DataOperand

A,4AH

40H

Label Code

MVl
CP~

Qperan~

,data

Code

ORt

Label

oplab:

Format:

The contents of the C register are moved to the accu
mulator. The ORI instruction then sets the low-order four
bits to one, leaving the high-order four bits unchanged.

Label

OR1:

Code

MOV
ORt

Operand

A,C
OFH

Ass~mbly Data

79
F60F

carry out = 1 causing the Carry bit to be reset

The accumulator still contains 4AH, but the zero bit
is reset indicating that the quantities were unequal, and the
carry bit is reset indicating OATA is less than the
accumulator.

29 Rev. B



DIRECT ADDRESSING INSTRUCTIONS LOA Load Accumulator Direct

Operand

Jt' adr ""LDA

CodeLabel

oplab:

Format:This section describes instructions which reference
memory by a two-byte address which is part of the instruc
tion itself. Instructions in this class occupy three bytes as
follows:

Note that the address is held least significant byte

least significant 8 bits of a
memory address

10 for STA
11 for LOA
00 for SHLD
01 for LHLD

Description: The byte at the memory address formed
by concatenating H I ADO with LOW ADO replaces the con
tents of the accumulator.

Condition bits affected: None

Example:

The following instructions will each replace the accu
mulator contents with the data held at location 300H:

300H
3*(16*16)

200H+256

LOA
LOA
LOA

LOAD:

GET:

t
most significant 8
bits of a memory
address

tt

first.

The general assembly language format is:

l L "-- A 16-bit memory

STA LOA, SHLD, or LHLD

Optional inst~uction label

oplab: K SHLD It' adr ""

b~ilil~1'~'Y~'1~', I,h;9,h:',d~~ I

SHLD Store Hand L Direct
Label Code

label: op

Operand

exp

address

Format:

Label Code Operand

STA Store Accumulator Direct

Description: The contents of the accumulator replace
the byte at the memory address formed by concatenating
HI ADO with LOW ADO.

SAC: STA 5B3H
STA 1459

LAB: STA 010110110011 B

Condition bits affected: None

Example:

The following instructions will each store the contents
of the accumulator at memory address 5B3H:

Memory
After SHLD

;

00
29
AE
00

109
lOA
lOB
10C
I
I

SHLD 10AH

;

0
00
00
00

Memory
Before SHLD

Description: The contents of the L register are stored
at the memory address formed by concatenati ng HI AD 0

with LOW ADO. The contents of the H register are stored at
the next higher memory address.

Condition bits affected: None

Example:

If the Hand L registers contain AEH and 29H respec
tively, the instruction:

will perform the following operation:
I

HEX
ADDRESS

OperandCodeLabel

Format:

30



LHLD Load HAnd L Direct

Description: The byte at the memory address formed
by concatenating HI ADD with LOW ADD replaces the con
tents of the L register. The byte at the next higher memory

address replaces the contents of the H register.

Condition bits affected: None

Example:

If memory locations 25BH and 25CH contain FFH
and 03H respectively, the instruction:

LHLD 25BH

The general assembly language format is:

OperandCode

PCHL

Label

oplab:

t "-

L
'not used

Optional instruction label

represented in the Jump instructions.

The three-byte instructions in this class cause a trans
fer of program control depending upon certain specified con

ditions. If the specified condition is true, program execution
will continue at the memory address formed by concatenat
ing the 8 bits of HI ADD (the third byte of the instruction)

with the 8 bits of LOW ADD (the second byte of the instruc
tion). If the specified condition is false, program execution
will continue with the next sequential instruction.

Operand

"'" adr ":».

Code

LHLD

Label

oplab:

Format:

will load the L register with F FH, and will load the H regis
ter with 03H. -or-

t "-
t

L
\ ~ A 16-bit address

JMP,JC,JNC,JZ,JNZ,JM JP,JPE JPO

JUMP INSTRUCTIONS

This section describes instructions which alter the nor

mal execution sequence of instructions. Instructions in this
class occupy one or three bytes as follows:

(a) For the PCHL instruction (one byte):

Label

label:

Code

op

Operand

EXP

Optional instruction label

PCHL Load Program Counter

Format:

(b) For the remaining instructions (three bytes):

Label

oplab:

Code

PCHL

Operand

t t t most significant 8

I ) bits of a memory

I address

I least significant 8 bits of a
memory address

1 for JMP, 0 otherwise

!
L 000 for JMP or JNZ

001 for JZ
010 for JNC
all for JC
100 for JPO
101 for JPE
110 for JP
111 for JM

Description: The contents of the H register replace the
most significant 8 bits of the program counter, and the con

tents of the L register replace the least significant 8 bits of
the program counter. This causes program execution to con
tinue at the address contained in the Hand L registers.

Condition bits affected: None

Example 1:

If the H register contains 41 H and the L register con
tains 3EH, the instruction:

PCHL

Note that, just as addresses are normally stored in
memory with the low-order byte fi rst, so are the addresses

will cause program execution to continue with the instruc
tion at memory address 413EH.

31



Example 2:

Arbitrary
Memory Assembled
Address Label Code Operand Data----
40CO ADR: DW LOC 0042

The JMP instruction at 3COOH replaces the contents

of the program counter with 3EOOH. The next instruction

executed is the XRA at CLR, clearing the accumulator. The

JMP at 3E01 H is then executed.

The program counter is set to 3DOOH, and the MVI at

this address loads the accumulator with 3. The JMP at

3D02H sets the program counter to 3C03H, causing the ADI
instruction to be executed.

4100

4200

STRT:

LOC:

LHLD ADR

PCHL

NOP

2AC040
E9

00

From here, normal program execution continues with
the instruction at 3C05H.

JC Jump If Carry

Format:

Label

oplab:

Code

JC

Operand

adr
j,!' "'"

Program execution begins at STRT. The LH LD in

struction loads registers Hand L from locations 40C1 H

and 40COH; that is, with 42H and OOH, respectively. The
PCHL instruction then loads the program counter with

4200H, causing program execution to continue at location
LOC.

JMP JUMP

Format:

Description: If the Carry bit is one, program execu

tion conti nues at the memory address adr.

Condition bits affected: None

For a programming example, see the section on JPO

later in th is chapter.

JNC Jump If No Carry

Format:

Label

oplab:

Code

JNC

Operand

adr
i/ ..".

Description: Program execution continues uncondi

tionally at memory address adr.

Condition bits affected: None

Example:

Arbitrary

Memory Assembled
Address Label Code Operand Data

I 3COO JMP CLR C3003E
3C03 AD: ADI 2 C602

~DOO
LOAD: MVI A,3 3E03

3D02 JMP 3C03H C3033C

3EOO CLR: XRA A AF
3E01 JMP $-101 H C3003D

The execution sequence of this example is as follows:

32

Description: If the Carry bit is zero, program execu

tion continues at the memory address adr.

Condition bits affected: None

For a programming example see the section on JPO

later in this chapter.

JZ Jump If Zero

Format:

Label Code Operan~

oplab: JZ adr
i/ ""

Description: If the zero bit is one, program execution
continues at the memory address adr.

Condition bits affected: None



JNZ Jump If Not Zero Condition bits affected: None

Format: JPO Jump If Parity Odd

JM Jump If Minus

Operand

adr

0/ 'Ii

JPO

Code

Assembled

Code Operand Data

MOV A,C 79

ANI 80H E680

JZ PLUS CAXXXX

JNZ MINUS C2XXXX

MOV A,C 79

RLC 07

JNC PLUS D2XXXX

JMP MINUS C3XXXX

MOV A,C 79

ADI 0 C600

JM MINUS FAXXXX

SIGN BIT

RESET

SIGN BIT SET

Format:

Label

oplab:

PLUS:

THREE:

Label

MINUS:

TWO:

ONE:

Description: If the Parity bit is zero (indicating a re

sult with odd parity), program execution conti nues at the

memory address adr.

Condition bits affected: None

Examples of jump instructions:

This example shows three different but equivalent

methods for jumping to one of two points in a program

based upon whether or not the Sign bit of a number is set.

Assume that the byte to be tested is in the C register.

Operand

adr

" 'Ii

Operand

adr

0/ "'It

JM

Code

Code

JNZ

Code

JP

Label

oplab:

Label

oplab:

Label

oplab:

Format:

Description: If the Sign bit is one (indicating a nega

tive result), program execution continues at the memory

address adr.

Condition bits affected: None

JP Jump If Positive

Format:

Description: If the Zero bit is zero, program execu

tion continues at the memory address adr.

Condition bits affected: None

~.

-....-.

Format:

JPE Jump If Parity Even

Description: If the parity bit is one (indicating a result
with even parity), program execution continues at the mem

ory address adr.

Description: If the sign bit is zero, (indicating a posi

tive result), program execution continues at the memory

address adr.

Condition bits affected: None

The AND immediate instruction in block ONE zeroes
all bits of the data byte except the Sign bit, which remains

unchanged. If the Sign bit was zero, the Zero condition bit

will be set, and the JZ instruction will cause program con

trol to be transferred to the instruction at PLUS. Otherwise,

the JZ instruction will merely update the program counter

by three. and the JNZ instruction will be executed, causing

control to be transferred to the instruction at MINUS. (The
Zero bit is unaffected by all jump instructions).

The RLC instruction in block TWO causes the Carry

bit to be set equal to the Sign bit of the data byte. If the

Sign bit was reset, the JNC instruction causes a jump to
PLUS. Otherwise the JMP instruction is executed, uncondi
tionally transferring control to MINUS. (Note that, in this

instance, a JC instruction could be substituted for the un
conditional jump with identical results).

JPEoplab:

Opera !:!!!.
adr

iL' 'Ii

~. low add " hi add I
I I I I I I I" I , I I I I I ,

33



Ihe add Immediate instruction in block THR EE:

causes the condition bits to be set. If the sign bit was set,

the JM instruction causes program. control to be transferred

to MINUS. Otherwise, program control flows automatically
into the PLUS routine.

continues at memory address SUB, formed by concatenating

the 8 bits of H I ADD with the 8 bits of LOW ADD. If the
specified condition is false, program execution continues

with the next sequential instruction.

CALL Call

Description: A call operation is unconditionally per

formed to subroutine sub.

Condition bits affected: None

For programming examples see Chapter 4.

Operand

sub

CC

Code

Code

CALL

Label

oplab:

Format:

CC Call If Carry

Format:

Label

oplab:

t

I
t

most significant 8
bits of a memory

address

least significant 8 bits of a

memory address

CALL SUBROUTINE INSTRUCTIONS

This section describes the instructions which call sub

routines. These instructions operate like the jump instruc

tions, causing a transfer of program control. In addition, a

return address is pushed onto the stack for use by the

RETURN instructions (see Return From Subroutine In
structions later in th is chapter).

Instructions in this class occupy three bytes as follows:

1 for CALL, 0 otherwise

000 for CNZ

001 for CZ or CALL
010 for CNC

011 for CC

100 for CPO
101 for CPE

110 for CP

111 for CM

Description: If the Carry bit is one, a call operation is

performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see

Chapter 4.
Note that, just as addresses are normally stored in

memory with the low-order byte first, so are the addresses

represented in the call instructions.

The general assembly language instruction format is:

\

\ "'--- A 16-1>;1 m,mo,y ,dd"",

CALL,CC,CNC,CZ,CNZ,CM,CP,CPE,CPO

Optional instruction label

Qperand

subCNC

CodeLabel

oplab:

Format:

CNC Call If No Carry

Operand

subop

Label Code

i label:

Instructions in this class call subroutines upon certain
specified conditions. If the specified condition is true, a re
turn address is pushed onto the stack and program execution

Description: If the Carry bit is zero, a call operation is
performed to subroutine sub.

34 Rev. B



CP Call If PlusCondition bits affected: None

For programming examples using subroutines, see
Chapter 4.

CZ Call If Zero

Format:

Label

oplab:

Code

CP

Operand

sub

Format:

Label

oplab:

Code

CZ

Operand

sub

CPE Call If Parity Even

For programming examples using subroutines, see
Chapter 4.

Description: If the Sign bit is zero (indicating a posi
tive result), a call operation is performed to subroutine sub.

Condition bits affected: None

OperandCode

CPE sub

Label

oplab:

Format:

~ .

For programming examples using subroutines, see
Chapter 4.

~ lowadd I hiadd I
111"11 1""11

Description: If the Zero bit is zero, a call operation is
performed to subroutine sub.

Condition bits affected: None

CNZ Call If Not Zero

It' '\I

~~' low add " hi add 'I~1111111 .. IIIIIII.

Format:

Label

oplab:

Code

CNZ

Operand

sub Description: If the Parity bit is one (indicating even
parity), a call operation is performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

CPO Call If Parity Odd
Description: If the Zero bit is one, a call operation is

performed to subroutine sub.

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

Format:

Label

oplab:

Code

CPO

Operand

sub

CM Call If Minus

~'111'1QOI' low add " hi ~dd I
I 1" I " " ' , I I I I '.

Description: If the Sign bit is one (indicating a minus
result), a call operation is performed to subrouti ne sub.

Condition bits affected: None

For programming examples using subroutines, see
Chapter 4.

For programming examples using subroutines, see
Chapter 4.

RETURN FROM SUBROUTINE INSTRUCTIONS

Description: If the Parity bit is zero (indicating odd
parity), a call operation is performed to subroutine sub.

Condition bits affected: None

This section describes the instructions used to return
from subroutines. These instructions pop the last address
saved on the stack into the program counter, causing a trans
fer of program control to that address.

CM

CodeLabel

oplab:

Format:

35



Instruction: in this class occupy one byte as follows:

Operand

RNC

t
CodeLabel

oplab:

Format:

RNC Return If No Carry

Description: If the Carry bit is one, a return operation
is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

~ 1 for RET,

ootherwise\
xxx ~I
I I L.L...L.J

000 for RNZ

001 for RZ or RET
010 for RNC

011 for RC

100 for RPO
101 for RPE
110 for RP
lllforRM

oplab: op

OperandCode

RZ

1

Label

oplab:

Format:

RZ Return If Zero

Description: If the carry bit is zero, a return operation

is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

Operand

\

"'---- not used

ET,RC,RNC,RZ,RNZ,RM,RP,RPE,RPO

Code

The general assembly language instruction format is:

\
Optional statement label

Label

Instructions in th is class perform RETU RN operations
upon certain specified conditions. If the specified condition
is true, a return operation is performed. Otherwise, program
execution continues with the next sequential instruction.

RET Return

Format:

Label

oplab:

Code

RET

~

Operand
Description: If the Zero bit is one, a return operation

is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

Description: A return operation is unconditionally
performed.

Thus, execution proceeds with the instruction immedi
ately following the last call instruction.

Condition bits affected: None

RNZ Return If Not Zero

Description: If the Zero bit is zero, a return operation
is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

OperandCode

RNZ

~
~

Label

oplab:

Format:

Operand

RC

*

CodeLabel

oplab:

RC Return If Carry

Format:

36 Rev. B



RM Return If Minus

Format:

Label

oplab:

Code

RM

1

Operand

Description: If the Parity bit is zero (indicating odd
parity), a return operation is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

RST INSTRUCTION

RP Return If Plus

Description: If the Sign bit is one (indicating a minus

result), a return operation is performed.

Condition bits affected: None

For programming examples, see Chapter 4. RST

Code

/exp

30/ /t
@_....L~_xP.L,_biliJ

Label

oplab:

NOTE: "exp" must evaluate to a number in the range
OOOB to 111B.

This section describes the RST (restart) instruction,
which is a special purpose subroutine jump. This instruction
occupies one byte.

Format:

OperandCode

RP

~

Label

oplab:

Format:

Description: If the Sign bit is zero (indicating a posi
tive result). a return operation is performed.

Condition bits affected: None

For programming examples, see Chapter 4.

RPE Return If Parity Even

Format:

Label Code Opera~~

oplab: RPE

\

Description: The contents of the program counter
are pushed onto the stack, providing a return address for
later use by a RETURN instruction.

Program execution continues at memory address:

OOOOOOOOOOEXPOOOB

Normally, this instruction is used in conjunction with
up to eight eight-byte routines in the lower 64 words of

memory in order to service interrupts to the processor. The

interrupting device causes a particular RST instruction to be

executed, transferring control to a subroutine which deals
with the situation as described in Section 6.

A RETURN instruction then causes the program
which was originally running to resume execution at the
instruction where the interrupt occurred.

Condition bits affected: None

Example:

RPO Return If Parity Odd

oplab: RPO
\.

Description: If the Parity bit is one (indicating even
parity), a return operation is performed.

Condition bits affected: None

For p£pgramming examples, see Chapter 4.

Label Code Operand Comment

RST 10 - 7 ; Call the subrouti ne at
; address 24 (011000B)

RST E SHL 1 ; Call the subroutine at
; address 48 (11 OOOOB). E
; is equated to 11B.

RST 8 ; Invalid instruction

RST 3 ; Call the subroutine at
; address 24 (011000B)

L- ~... _. - --'

CodeLabel

Format:

For detailed examples of interrupt handling, see
Chapter 5.

37



INTERRUPT FLIP-FLOP INSTRUCTIONS

This section describes the instructions which operate
directly upon the Interrupt Enable fl ip-flop INTE. Instruc
tions in this class occupy one byte as follows:

~
'"'-------1 for EI

ofor 01

~ device no.t\ ~::::::;"'t='=-
8-bit device number

1 for IN
ofor OUT

The device number is a hardware characteristic of the
input or output device, not under the programmer's control.

The general assembly language format is:

EI Enable Interrupts

Format:

Optional instruction label

\ "---- 00' u"d

EI or 01

The general assembly language format is:

Operand

expop

Code

\

\ '--- Ao 8M d..;o, oumb"

IN or OUT

Optional instruction label

Label

label:

Operand

op

Code

\
Label

label:

Label Code Operand

oplab: EI

IN Input

Format:

Description: This instruction sets the I NTE flip-flop,
enabling the CPU to recognize and respond to interrupts.

Condition bits affected: None

Label

oplab:

Code

IN

Operand

exp

1

01 Disable Interrupts

Format:

Label

oplab:

Code

01

Operand

Description: An eight-bit data byte is read from input
device number exp and replaces the contents of the
accumulator.

Condition bits affected: None

Example:

Descriptio!\ This instruction resets the INTE flip-flop,
causing the CPU to ignore all interrupts.

Condition bits affected: None Label Code Operand Comment

INPUT/OUTPUT INSTRUCTIONS

This section describes the instructions which cause
data to be input to or output from the 8080. Instructions in
this class occupy two bytes as follows:

IN

IN

o

10/2

; Read one byte from input
; device # 0 into the
; accumulator
; Read one byte from input
; device # 5 into the
; accumulator

38



OUT Output

Format:

It acts merely to provide the assembler with information to
be used subsequently while generating object code.

Description: The contents of the accumulator are sent
to output device number expo

Condition bits affected: None

The general assembly language format of a pseudo
instruction is:

Comment

"'- Operand, may be optional

Operand

opnd

ORG,EQU,SET,END,IF,ENDIF,MACRO,
ENDM

\
op

Code

name may be required, option, or illegal

name

\
Label

Code

OUT

Label

oplab:

Example:

Label Code Operand Comment

OUT 10 ; Write the contents of the
; accumulator to output
; device # 10

OUT 1FH ; Write the contents of the
; accumulator to output
; device # 31

NOTE: Names on pseudo-instructions are not followed by
a colon, as are labels. Names are required in the
label field of MACRO, EQU, and SET pseudo
instructions. The label fields of the remaining
pseudo-instructions may contain optional labels,
exactly like the labels on machine instructions. In
this case, the label refers to the memory location
immediately following the last previously assem
bled machine instruction.

ORG Origin

Format:

HlT HALT INSTRUCTION

This section describes the HLT instruction, which oc
cupies one byte.

Format:

Label

oplab:

Code

ORG

Operand

exp

t
A 16-bit address

Label

oplab:

Code

HLT

t
not used

Description: The assembler's location counter is set to
the value of exp, which must be a valid 16-bit memory ad
dress. The next mach ine instruction or data byte(s) gener
ated will be assembled at address exp, exp+1, etc.

If no GRG appears before the first machine in
struction or data byte in the program, assembly will begin
at location O.

Description: The program counter is incremented to
the address of the next sequential instruction. The CPU then
enters the STOPPED state and no further activity takes
place until an interrupt occurs.

PSEUDO - INSTRUCTIONS

This section describes pseudo-instructions recognized
by the assembler. A pseudo-instruction is written in the same
fashion as the machine instructions described earlier in this
chapter, but does not cause any object code to be generated.

Example 1:

Hex Memory Assembled
Address Label Code Operand Data

ORG 1000H
1000 MOV A,C 79
1001 ADI 2 C602
1003 JMP NEXT C35010

HERE: ORG 1050H
1050 NEXT: XRA A AF

39



OUT 8

SET

The OUT instruction in this example is equivalent to

the statement:

If at some later time the programmer wanted the

name PTO to refer to a different output port, it would be
necessary only to change the EQU statement, not every

OUT statement.

t
An expression

Opera l1E
exp

\
Required name

Label Code

name SET

Format:

Description: The symbol "name" is assigned the value

of exp by the assembler. Whenever the symbol "name" is

encountered subsequently in the assembly, th is value will be

used unless changed by another SET instruction.

This is identical to the EQU equation, except that

symbols may be defined more than once.

Example 1:

The first ORG pseudo-instruction informs the assem

bler that the object program will begin at memory address

1000H. The second ORG tells the assembler to set its loca

tion counter to 1050H and continue assembling machine in

structions or data bytes from that point. The label HERE
refers to memory location 1006H, since this is the address

immediately following the jump instruction. Note that the

range of memory from 1006H to 104FH is still included in
the object program, but does not contain assembled data. In
particular, the programmer should not assume that these
locations will contain zero, or any other value.

Example 2:

The ORG pseudo-instruction can perform a function

equivalent to the OS (define storage) instruction (see the
section on OS earlier in this chapter). The following two

sections of code are exactly equivalent:

Memory Assbl.
Address Label Code Operand Label Code Operand Data-- -- ----- --
2COO MOV A,C MOV A,C 79
2COt JMP NEXT JMP NEXT 'C3102C
2C04 OS 12 ORG $+t2
2Cl0 NEXT: XRA A NEXT: XRA A AF

EQU Equate

Format:

Label

name

\

Code

EQU

Qperand

exp

t
An expression

Label Code Qperand Assembled Data

IMMED SET 5
ADI IMMED C605

IMMED SET 10H-6

ADI IMMED C60A

Required name

Description: The symbol "name" is assigned the value

by EXP by the assembler. Whenever the symbol "name" is

encountered subsequently in the assembly, this value will be

used.

Example 2:

Before every assembly, the assembler performs the fol
lowing SET statements:

NOTE: A symbol may appear in the name field or only one

EQU pseudo-instruction; i.e., an EQU symbol may

not be redefined.

Example:

Label Code Operand Assembled Data

Label Code Qperand

B SET 0

C SET 1

0 SET 2
E SET 3
H SET 4
L SET 5
M SET 6
A SET 7

PTO EQU 8
If this were not done, a statement like:

MOV D,A

OUT PTO 0308 would be invalid, forcing the programmer to write:

MOV 2,7

40



END End Of Assembly

Description: The END statement signifies to the as
sembler that the physical end of the program has been
reached, and that generation of the object program and (pos
sibly) listing of the source program should now begin,

One and only one END statement must appear in

every assembly, and it must be the (physically) last state
ment of the assembly.

oplab: END

MACRO AND ENDM Macro Definition

A9

79

Assembled Data lCode Operand

SET OFFH
IF COND

MOV A,C

ENDIF

SET 0
IF COND
MOV A,C
ENDIF

XRA C

Example:

Label

COND

COND

OperandCodeLabel

Format:

-..-'

Format:

Label

name

Code

MACRO

Qpera~~

list

I F AND ENDI F Conditional Assembly

Format:

Label

oplab:

Code

IF

J
Required name

t
A Iist of expressions,

normally ASCII constants

statements

t
an expression

oplab: ENDM

Description: The assembler evaluates expo If exp evalu

ates to zero, the statements between IF and ENDIF are ig

nored. Otherwise the intervening statements are assembled

as if the IF and EN DIF were not present.

oplab:

statements

ENDIF

Description: For a detailed explanation of the def

inition and use of macros, together with programming
examples, see Chapter 3.

The assembler accepts the statements between MAC

RO and ENDM as the definition of the macro named

"name." Upon encountering "name" in the code field of an

instruction, the assembler substitutes the parameters speci
fied in the operand field of the instruction for the occur

rences of "list" in the macro definition, and assemblies the
statements.

NOTE: The pseudo-instruction MACRO may not appear in

the Iist of statements between MACRO and ENDM;

i.e., macros may not define other macros.

41



Macros (or macro instructions) are an extremely im
portant tool provided by the assembler. Properly utilized,
they will increase the efficiency of programming and the
readability of programs. It is strongly suggested that the user
become familiar with the use of macros and utilize them to
tailor programming to suit his specific needs.

WHAT ARE MACROS?

The definition specifies the instruction sequence that
is to be represented by the macro name. Thus:

Label Code Operand

SHRT MACRO
RRC
ANI 7FH
ENDM

is the definition of SHRT, and specifies that SHRT stands
for the two instructions:

RRC
ANI 7FH

Every macro must be defined once and only once in a
program.

LOA TEMP
SHRT ; Macro reference
STA TEMP

OperandLabel Code

The reference is the point in a program where the
macro is referenced. A macro may be referenced in any num
ber of statements by inserting the macro name in the code
field of the statements:

Label Code Operand

SHRT MACRO
RRC ; Rotate accumulator

; right
ANI 7FH ; Clear high-order bit
ENOM

A macro is a means of specifying to the assembler that
a symbol (the macro name) appearing in the code field of a
statement actually stands for a group of instructions. Both
the macro name and the instructions for which it stands are
chosen by the programmer.

Consider a simple macro which shifts the contents of
the accumulator one bit position to the right, while a zero is
shifted into the high-order bit position. We will call this
macro SHRT, and define it by writing the following instruc
tions in the program:

The expansion of a macro is the complete instruction
sequence represented by the macro reference:

We can now reference the macro by placing the fol
lowing instructions later in the same program:

Label Code Operand

LOA TEMP ; Load accumulator
SHRT

which would be equivalent to writing:

Label Code

LOA
RRC
ANI
STA

Operand

TEMP

I;Macro reference
7FH
TEMP

The example above illustrates the three aspects of a
macro: the definition, the reference, and the expansion.

LDA TEMP ; Load accumulator
RRC
ANI 7FH

Label Code Operand
The macro expansion will not be present in a source

program, but its machine language equivalent will be genera
ted by the assembler in the object program.

Now consider a more complex case, a macro that shifts
the accumulator right by a variable number of bit positions
specified by the 0 register contents.

43



This macro is named SHV, and defined as follows:

Label Code

Here is another example of an SHV reference:

Label Code Operand

MVI C,5
LOOP: RRC

ANI 7FH

DCR C
JNZ LOOP

OperandLabel Code

; Rotate right once

; Clear the high-order bit

; Decrement shift counter

; Return for another shift

Operand

7FH

D
LOOP

MACRO
RRC

ANI

DCR
JNZ
ENDM

SHV
LOOP:

The SHV macro may then be referenced as follows: ; Assume Register E is free, and a 2-place shift is needed
Label Code Operand SHV E,2

The above instruction sequence is equivalent to the
expression:

LDA TEMP
MVI D,3 ; Specify 3 right shifts

SHV
STA TEMP

Note that the D register contents will change when

ever the SHV macro is referenced, since it is used to specify
shift count.

A better method is to write a macro which uses an

arbitrary register and loads its own shift amount using macro

parameters. Such a macro is defined as follows:

and the equivalent expansion:

Operand

plist

Operand

E,2

MACRO

7FH

E
LOOP

Code

name

Label

Label Code

MVI
LOOP: RRC

ANI

DCR

JNZ

Format:

MACRO TERMS AND USE

The previous section explains how a macro must be
defined, is then referenced, and how every reference has an
equivalent expanison. Each of these three aspects of a macro

will be described in the following subsections.

While the preceding examples will provide a general
idea of the efficiency and capabil ities of macros, a rigorous
description of each aspect of macro programming is given in
the next section.

Macro Definition

Operand

TEMP
D,3

7FH

D
LOOP
TEMP

Label Code

LDA
MVI

LOOP: RRC

ANI

DCR
JNZ
STA

Label Code Operand
mac r 0 bod Y

ENDM

LDA TEMP

SHV may now be referenced as follows:

; Assume Register C is free, and a 5-place shift is needed

the expansion of which is given by:

Description: The macro definition produces no assem
bled data in the object program. It merely indicates to the

assembler that the symbol "name" is to be considered equiv
alent to the group of statements appearing between the

pseudo instructions MACRO and ENDM (see Chapter 2 

MACRO and ENDM Macro Definition). This group of state
ments, called the macro body, may consist of assembly lan
guage instructions, pseudo-instructions (except MACRO or
ENDM), comments, or references to other ma,cros.

"plist" is a list of expressions (usually unquoted char
acter strings) which indicate parameters specified by the

macro reference that are to be substituted into the macro
body. These expressions, which serve only to mark the posi
tions where macro parameters are to be inserted into the
macro body, are called dummy parameters.

Example:

The following macro takes the memory address of the

; Load sh ift cou nt
; into register

. ; specified
; by REG

; Perform right rotate

; Clear high-order bit

; Decrement shift
; counter

C,5

Operand

SHV

JNZ LOOP
ENDM

LOOP: RRC

ANI 7FH

DCR REG

Label Code

SHV MACRO REG,AMT

MVI REG,AMT

44



label specified by the macro reference, loads the most signif
icant 8 bits of the address into the C register, and loads the
least significant 8 bits of the address into the B register. (This
is the opposite of what the instruction LXI B,ADDR would
do).

If more parameters appear in the reference than the
definition, the extras are ignored.

Example:

Given the macro definition:

Label Code Operand

LOAD MACRO ADDR
MVI C, ADDR SHR 8
MVI B, ADDR AND OFFH
ENDM

Label Code Operand

MACl MACRO Pl, P2, COMMENT
XRA P2
OCR Pl COMMENT
ENDM

LABEL: The reference:

INST:

The reference:

Code

MACl

Operand

C,D, ; DECREMENT
;REG C'

Code

LOAD

is equivalent to the expansion:

Code

MVI
MVI

Operand

LABEL

Operand

C, LABEL SHR 8
B, LABEL AND OFFH

is equivalent to the expansion:

Code

XRA
OCR

The reference:

Code

Operand

o
C ; DECREMENT REG C

Operand

The reference: MACl E.B

Code

LOAD

Operand

INST

is equivalent to the expansion:

Code Operand

Example:

Given the macro definition:

Macro Expansion

The result obtained by substituting the macro param
eters into the macro body is called the macro expansion.
The assembler assembles the statements of the expansion
exactly as it assembles any other statements. In particular.
every statement produced by expanding the macro must be
a legal assembler statement.

is equivalent to the expansion:

Code Operand

MVI C,INST SHR 8
MVI B, INST AND OFFH

The MACRO and ENDM statements inform the assem
bler that when the symbol LOAD appears in the code field
of a statement, the characters appearing in the operand field
of the statement are to be substituted everywhere the symbol
ADD R appears in the macro body, and the two MVI instruc
tions are to be inserted into the statements at that point of
the program and assembled.

Macro Reference Or Cal1

XRA
OCR

B
E

Format:

Label Code

name

Operand

plist

Label

MAC

Code

MACRO
PUSH
ENDM

Operand

Pl

Pl

but the reference:

PUSH C

MAC C

PUSH B

BMAC

the reference:

will produce the legal expansion:

will produce the illegal expansion:

which will be flagged as an error.

"name" must be the name of a macro; that is, "name"
appears in the label field of a MACRO pseudo-instruction.

"plist" is a list of expressions. Each expression is sub·
stituted into the macro body as indicated by the operand
field of the MACRO pseudo·instruction. Substitution pro
ceeds left to right; that is, the first string of "plist" replaces
every occurrence of the first dummy parameter in the macro
body, the second replaces the second, and so on.

If fewer parameters appear in the macro reference than
in the definition, a null string is substituted for the remain
ing expressions in the definition.

45



Scope of Labels and Names Within Macros

In th is section, the terms global and local are impor
tant. For our purposes, they will be defined as follows: A
symbol is globally defined in a program if its value is known

and can be referenced by any statement in the program,
whether or not the statement was produced by the expan

sion of a macro. A symbol is locally defined if its value is
known and can be referenced only within a particular macro
expansion.

Instruction Labels: Normally a symbol may appear in
the label field of only one instruction. If a label appears in

the body of a macro, however, it will be generated whenever
the macro is referenced. To avoid multiple-label confl icts,
the assembler treats labels within macros as local labels, ap
plying only to a particular expansion of a macro. Thus, each
"jump to LOOP" instruction generated in the first example

of the chapter refers uniquely to the label LOOP generated
in the local macro expansion.

Conversely, if the programmer wishes to generate a
global label from a macro expansion, he must follow the
label with two colons in the macro definition, rather than
one. Now, this global label must not be generated more than
once, since it is global and therefore must be unique in the
program.

For example, consider the macro definition:

If two references to TMAC appear in a program, the

label LOOP will be a local label and each JMP LOOP instruc

tion will refer to the label generated within its own
expansion:

Label

TMAC

LOOP:

Code

MACRO

JMP

EN OM

Operand

LOOP

If in the macro definition, LOOP had been followed
by two successive colons, LOOP would be generated as a
global label by the first reference to TMAC, while the second
reference would be flagged as an error.

"Equate" Names: Names on equate statements within

a macro are always local, defined only within the expansion

in which they are generated.

For example, consider the following macro definition:

Label Code Operand

EQMAC MACRO

VAL EQU 8
DB VAL
ENDM

The following program section is valid:

Label Code Operand Assembled Data

VAL EQU 6
DB1: DB VAL 06

EQMAC

VAL EQU 8
DB VAL 08

DB2: DB VAL 06

VAL is first defined globally with a value of 6. There
fore the reference to VAL at DB 1 produces a byte equal to

6. The macro reference EQMAC generates a symbol VAL
defined only within the macro expansion with a value of 8;
therefore the reference to VAL by the second statement of

the macro produces a byte equal to 8. Since th is statement

ends the macro expansion, the reference to VAL at DB2 re
fers to the global definition of VAL. The statement at DB2

therefore produces a byte equal to 6.

Program

TMAC
LOOP:

JMP

TMAC
LOOP:

JMP

46

"Set" Names: Suppose that a "set" statement is gen

erated by a macro. If its name has already been defined glob

ally by another set statement, the generated statement will

change the global value of the name for all subsequent ref
erences. Otherwise, the name is defined locally, applying
only within the current macro expansion. These cases are
illustrated as follows:

Consider the macro definition:

Label Code Operand

STMAC MACRO
SYM SET 5

DB SYM
ENDM

The following program section is valid:



Then the macro reference:

MAC4 ABC

If, however, the user had instead written the macro
reference:

will cause the assembler to evaluate ABC and to substitute
the value 3 for parameter Pl, then produce the expansion:

Label Code Operand Assembled Data

SYM SET 0
DBl : DB SYM 00

STMAC
SYM SET 5

DB SYM 05
DB2: DB SYM 05

ABC SET
DB

14
3

the assembler would evaluate the expression 'ABC: produc
ing the characters ABC as the value of parameter Pl. Then
the expansion is produced, and, since ABC is altered by the
first statement of the expansion, Pl will now produce the
value 14.

Expansion produced:

SYM is first defined globally with a value of zero, caus
ing the reference at DBl to produce a byte of O. The macro
reference STMAC resets this global value to 5, causing the
second statement of the macro to produce a value of 5. Al
though this ends the macro expansion, the value of SYM re
mains equal to 5, as shown by the reference at DB2.

Using the same macro definition as above, the follow
ing program section is invalid: ABC

MAC4

SET
DB

'ABC'

14

ABC ; Assembles as 14

Macro Parameter Substitution

Example:

Suppose that the following macro MAC4 is defined at
the beginning of the program:

Since in this case SYM is first defined in a macro ex
pansion, its value is defined locally. Therefore the second
(and final) statement of the macro expansion produces a
byte equal to 5. The statement at DB3 is invalid, however,
since SYM is unknown globally.

The value of macro parameters is determined and
passed into the macro body at the time the macro is refer

enced, before the expansion is produced. This evaluation
may be delayed by enclosing a parameter in quotes, causing
the actual character string to be passed into the macro body.
The string will then be evaluated when the macro expansion
is produced.

REASONS FOR USING MACROS

The use of macros is an important programming tech
nique that can substantially ease the user's task in the fol
lowing ways:

(a) Often, a small group of instructions must be repeated
many times throughout a program with only minor
changes for each repetition.

Macroscan reduce the tedium (and resultant increased
chance for error) associated with these operations.

(b) If an error in a macro definition is discovered, the pro
gram can be corrected by changing the definition and
reassembling. If the same routine had been repeated
many times throughout the program without using
macros, each occurrence would have to be located and
changed. Thus debugging time is decreased.

(c) Duplication of effort between programmers can be re
duced. Once the most efficient coding of a particular
function is discovered, the macro definition can be
made available to all other programmers.

(d) As has been seen with the SHRT (shift right) macro,
new and useful instructions can be easily simulated.

05
**ERROR**

Assembled Data

5
SYM
SYM

OperandLabel Code

STMAC
SYM SET

DB
DB3: DB

Further suppose that the statement:

has been written before the first reference to MAC4, setting
the value of ABC to 3.

Label Code Operand

MAC4 MACRO Pl
ABC SET 14

DB Pl
ENDM

ABC SET 3

USEFUL MACROS

Load Indirect Macro

The following macro, LIND, loads register RI indirect
from memory location INADD.

That is, location INADD wi II be assumed to hold a
two-byte memory address (least significant byte first) from
which register RI will be loaded.

47 Rev. B



Example:

If the address of INADD is 134CH, register RI will be
loaded from the address held in memory locations 134CH
and 134DH, which is 1350H.

LIND MACRO RI, INADD
LHLD INADD ; Load indirect address

; into Hand L registers
MOV RI, M : Load data into RI
ENDM

Comment

RP, BSADD
H, BSADD ; Load the base address
RP ; Add index to base

; address

Operand

ENDM

Macro reference:

Label Code

IXAD MACRO
LXI
DAD

Label Code Operand

; The address created in Hand L by the following macro
; call will be Label + 012EH

Other Indirect Addressing Macros

Refer to the LIND macro definition in the last section.
Only the MOV RI,M instruction need be altered to create
any other indirect addressing macro. For example, substi
tuting MOV M,RI will create a "store indirect" macro. Pro
viding RI is the accumulator, substituting ADD M will create
an "add to accumulator indirect" macro.

As an alternative to having load indirect, store indirect,
and other such indirect macros, we could have a "create
indirect address" macro, followed by selected instructions.
This alternative approach is illustrated for indexed address
ing in the next section.

Create Indexed Address Macro

The following macro, IXAD, loads registers Hand L
with the base address BSADD, plus the 16-bit index formed
by register pair RP (RP=B,D,H, or SP).

Macro definition:

RI

Comment

Indicates address
of data

------7)~FF

50

13

134C

Label Code Opera~

134D

Macro definition:

1350

134E

134F

Macro reference:

Hex
Memory Address

; Load register C indirect with the contents of memory
; location LABEL.

LIND C, LABEL

Macro expansion:

Label Code Operand

LHLD LABEL
MOV C,M

Label Code Operand MVI D,1
MVI E,2EH
IXAD D,LABEL

Macro expansion:

Label Code Operand

MVI D,1
MVI E,2EH
LXI H, BSADD
DAD D

48



This section describes some techniques other than
macros wh ich may be of hel p to the programmer.

BRANCH TABLES PSEUDO-SUBROUTINE

Suppose a program consists of several separate rou
tines, any of which may be executed depending upon some
initial condition (such as a number passed in a register). One
way to code this would be to check each condition sequenti
ally and branch to the routines accordingly as follows:

CONDITION = CONDITION 1?
IF YES BRANCH TO ROUTINE 1
CONDITION = CONDITION 2?
IF YES BRANCH TO ROUTINE 2

BRANCH TO ROUTINE N

Jump to routine 1 if the accumulator holds 00000001

2 " " 00000010
3 " " 00000100
4 00001000
5 00010000
6 " " 001 00000
7 " " 01000000

8 10000000

A program that provides the above logic is given at the
end of this section. The program is termed a "pseudo

subroutine" because it is treated as a subroutine by the pro
grammer (i.e., it appears just once in memory). but it is
entered via a regular JUMP instruction rather than via a
CALL instruction. This is possible because the branch rou
tine controls subsequent execution, and will never return to
the instruction following the call:

A sequence as above is inefficient, and can be im

proved by using a branch table.

Main Program Branch Table
Program

Jump

Routines

The logic at the beginning of the brandl table program
computes a pointer into the branch table. The branch table
itself consists of a list of starting addresses for the routines
to be branched to. Using the pointer, the branch table pro
gram loads the selected routine's starting address into the
address bytes of a jump instruction, then executes the jump.
For example, consider a program that executes one of eight
routines depending on which bit of the accumulator is set:

49

1
normal subroutine return
sequence not followed by
branch table program

Rev. B



Label Code Operand

START: LXI H,BTBL ; Registers Hand L will
; point to branch table.

GTBIT: RAR
JC GETAD
INX H ; (H,L)=(H,L)+2 to
INX H ; point to next address

; in branch table.
JMP GTBIT

GETAD: MOV E,M ; A one bit was found.
INX H ; Get address in D and

; E.
MOV D,M
XCHG ; Exchange D and E

; with Hand L.
PCHL ; Jump to routine

; address.

causes the top address in the stack to be popped into the
program counter, causing program execution to continue
with the instruction following the CALL. Thus, one copy of
a subroutine may be called from many different points in
memory, preventing duplication of code.

Example:

Subroutine MINC increments a 16-bit number held
least-significant-byte first in two consecutive memory loca
tions, and then returns to the instruction following the last
CALL statement executed. The address of the number to be
incremented is passed in the Hand L registers.

Label Code Qperand Comme~

MINC: INR M ; Increment low-order byte
RNZ ; If non-zero, return to

; calling routine
INX H ; Address high-order byte
INR M ; Increment high-order byte
RET ; Return unconditionally

Assume MINC appears in the following program:

Arbitrary
Memory Address

Arbitrary
Memory Address

CALL MINC

CALL MINC ' .::.3.::cCO:::.:0'-*', MINe I

~

2COO

2EFO

BTBL: DW ROUTl ; Branch table. Each
DW ROUT2 ; entry is a two-byte

; address
DW ROUT3 ; held least significant
DW ROUT4 ; byte first.
DW ROUT5
DW ROUT6
DW ROUT7
DW ROUT8

The control routine at START uses the Hand L regis
ters as a pointer into the branch table (BTB L) corresponding
to the bit of the accumulator that is set. The routine at
GETAD then transfers the address held in the corresponding
branch table entry to the Hand L registers via the D and E
registers, and then uses a PCH L instruction, thus transferring
control to the selected routine.

SUBROUTINES
Frequently, a group of instructions must be repeated

many times in a program. As we have seen in Chapter 3, it is
sometimes helpful to define a macro to produce these
groups. If a macro becomes too lengthy or must be repeated
many times, however, better economy can be obtained by
using subroutines.

A subroutine is coded like any other group of assembly
language statements, and is referred to by its name, which is
the label of the first instruction. The programmer references
a subroutine by writing its name in the operand field of a
CALL instruction. When the CALL is executed, the address
of the next sequential instruction after the CALL is pushed
onto the stack (see the section on the Stack Pointer in
Chapter 1), and program execution proceeds with the first
instruction of the subroutine. When the subroutine has com
pleted its work, a RETURN instructiofl is executed;.. which

When the first call is executed, address 2C03H is
pushed onto the stack indicated by the stack pointer, and
control is transferred to 3COOH. Execution of either RE
TURN statement in MINC will cause the top entry to be
popped off the stack into the program counter, causing exe
cution to continue at 2C03H (since the CALL statement is
three bytes long).

Stack After
Stack Before Stack While RETURN
CALL MINC Executes is Performed

FF FF ~Stack FF
Pointer

FF 2C 2C

FF
~Stack

00 00
~Stack

Pointer Pointer

FF FF FF

50



The first time ADSUB is called, it loads the A and B
registers from PUST and PLIST+1 respectively, adds them,
and stores the result in PLiST+2. Return is then made to
the instruction at RET1.

The second time ADSUB is called, the Hand L regis
ters point to the parameter list L1ST2. The A and B registers
are loaded with 10 and 35 respectively, and the sum is stored
at L1ST2 + 2. Return is then made to the instruction at

RET2.

When the second call is executed, address 2EF3H is
pushed onto the stack, and control is again transferred to
MINC. This time, either RETURN instruction will cause exe
cution to resume at 2EF3H.

Note that MI NC could have called another subroutine
during its execution, causing another address to be pushed
onto the stack. This can occur as many times as necessary,
Iimited only by the size of memory available for the stack.

Note also that any subroutine could push data onto
the stack for temporary ssorage without affecting the call
and return sequences as long as the same amount of data is
popped off the stack before executing a RETURN statement.

Transferring Data To Subroutines
A subroutine often requires data to perform its opera

tions. In the simplest case, this data may be transferred in
one or more registers. Subroutine MINC in the last section,
for example, receives the memory address which it requires
in the Hand L registers.

Sometimes it is more convenient and economical to let
the subroutine load its own registers. One way to do this is
to place a list of the required data (called a parameter list)
in some data area of memory, and pass the address of this
list to the subroutine in the Hand L registers.

For example, the subroutine ADSUB expects the ad
dress of a three-byte parameter list in the Hand L registers.
It adds the first and second bytes of the list, and stores the
result in the third byte of the list:

First call to ADSUB:

ADSUBD
06

08

~ OEH

PLiST

PUSHI

PLlSH2

Note that the parameter lists PLiST and L1ST2 could
appear anywhere in memory without altering the results pro
duced by ADSUB.

This approach does have its limitations, however. As
coded, ADSUB must receive a list of two and only two num
bers to be added, and they must be contiguous in memory.
Suppose we wanted a subroutine (GENAD) which would
add an arbitrary number of bytes, located anywhere in mem
ory, and leave the sum in the accumulator.

This can be done by passing the subroutine a param
eter list wh ich is a Iist of addresses of parameters, rather
than the parameters themselves, and signifying the end of
the parameter list by a number whose first byte is FFH
(assuming that no parameters will be stored above address
FFOOH).

Second call to ADSUB:
Label Code Operand Comment

-
~

LXI H, PLiST ; Load Hand L with
; addresses of the paramo

; eter list

CALL ADSUB ; Call the subroutine

RET1:

PLlST: DB 6 ; First number to be added
DB 8 ; Second number to be

; added

DS ; Result will be stored here

LXI H, L1ST2 ; Load Hand L registers
CALL ADSUB ; for another call toADSUB

RET2:

L1ST2: DB 10
DB 35
DS 1

ADSUB: MOV A,M ; Get first parameter

INX H ; Increment memory
; address

MOV B, M ; Get second parameter

ADD B ; Add first to second

INX H ; Increment memory
; address

'--"" L MOV M,A ; Store result at third
; parameter store

RET ; Return uncond itionally

51

ADSUBD H

CJ,

L

CJ

OA L1ST2

23 L1ST2+1

20 L1ST2+2



Call to GENAO:

AOR2

DOD

l DR1f~

; Calling program

; List of parameter addresses

; Terminator

Comment

As implemented below, GENAO saves the current sum
(beginning with zero) in the C register. It then loads the ad

dress of the first parameter into the 0 and E registers. If this
address is greater than or equal to FFOOH, it reloads the

accumulator with the sum held in the C register and returns

to the calling routine. Otherwise, it loads the parameter into
the accumulator and adds the sum in the C register to the
accumulator. The routine then loops back to pick up the
remaining parameters.

PARMl

PARM4

~ PARM3AOR3

AOR4

FFFF [§J PARM2

Code Operand

LXI H, PLiST
CALL GENAO

OW PARMl
OW PARM2
OW PARM3

OW PARM4
OW OFFFFH

08 6
DB 16

DB 13PABM3:

Label

PLfST:

PARM1:
PARM4~

GENAO:

PARM2: DB 82

GENAO: XRA A ; Clear accumulator
LOOP: MOV C,A ; Save current total in C

MOV E, M ; Get low order address byte
; of first parameter

tNX H
MOV A,M ; Get high order address byte

; of first parameter
CPI OFFH ; Compare to FFH
JZ BACK ; If equal, routine is complete
MOV O,A ; 0 and E now address parameter
LDAX 0 ; Load accumulator with parameter
ADD C ; Add previous total
INX H ; Increment Hand L to point

; to next parameter address
JMP LOOP ; Get next parameter

BACK: MOV A,C ; Routine done-restore total
RET ; Return to calling routine

52



Note that GENAD could add any combination of the
parameters with no change to the parameters themselves.

The sequence:

LXI
CALL

H, PLIST
GENAD

SOFTWARE MULTIPLY AND DIVIDE

The multipl ication of two unsigned 8-bit data bytes
may be accomplished by one of two techniques: repetitive
addition, or use of a register shifting operation.

Repetitive addition provides the simplest, but slowest,
form of multipl ication. For example. 2AH· 74H may be gen
erated by adding 74H to the (initially zeroed) accumulator
2AH times.

would cause PARM1 and PARM4 to be added, no matter
where in memory they might be located (excluding ad
dresses above FFOOHI.

Many variations of parameter passing are possible. For
example, if it was necessary to allow parameters to be stored
at any address, a calling program could pass the total number
of parameters as the first parameter; the subroutine would
load this first parameter into a register and use it as a count
er to determine when all parameters had been accepted.

PLlST: DW
DW
DW

PARM4
PARM1
OFFFFH

Using shift operations provides faster multiplication.
Shifting a byte left one bit is equivalent to multiplying by 2,
and shifting a byte right one bit is equivalent to dividing by
2. The following process will produce the correct 2-byte
result of multiplying a one byte multiplicand by a one byte
multipl ier:

(a) Test the least significant bit of the multiplier. If zero,
go to step b. If one, add the multipl icand to the most
significant byte of the result.

(b) Shift the entire two-byte result right one bit position.

(c) Repeat steps a and b until all 8 bits of the multiplier
have been tested.

For example, consider the multiplication:

2AH·3CH=9D8H

10110000

00000000

11011000

00000000
00000000
00000000
00000000
10000000
10000000
11000000
11000000
01100000

LOW-ORDER BYTE

OF RESULT

00000000

00000000

00001001

00010011

00000000
00101010
00010101
00111111
00011111
01001001
00100100
01001110
00100111

HIGH-ORDER BYTE

OF RESULT

00000000

MULTIPLIER MULTIPLICAND

Start 00111100 00101010
Step 1 a ---------------------------------------

b

Step 2 a --------------------------------------
b

S~p3a---------------------------------------

b
Step 4 a ---------------------------------------

b
S~p5a---------------------------------~-----

b
Step 6 a ---------------------------------------

b
Srep7a---------------------------------------

b
Srep8a---------------------------------------

b

",-,,'

53



DONE:

MOV B, A
JMP MULTO

c

C

o

B,O ; Initialize most significant byte
; of result

E,9 ; Bit counter
A, C ; Rotate least significant bit of

; multiplier to carry and shift
C, A ; low-order byte of result
E
DONE; Exit if complete
A,B
MULTl
D ; Add multiplicand to high

; order byte of result if bit
; was a one
; Carry=O here; shift high

; order byte of result

B

D

MULT: MVI

MVI
MULTO: MOV

RAR
MOV
DCR
JZ
MOV
JNC
ADD

MULT1: RAR

An analogous procedure is used to divide an unsigned
16-bit number by an unsigned 8-bit number. Here, the pro
cess involves subtraction rather than addition, and rotate
left instructions instead of rotate-right instructions.

The program uses the Band C registers to hold the
most and least significant byte of the dividend respectively,
and the D register to hold the divisor. The 8-bit quotient is
generated in the C register, and the remainder is generated
in the B register.

Register D holds the multiplicand, and register C orig
inally holds the multiplier.

a number of important programming techniques, a sample
program is given with comments.

The program uses the B register to hold the most sig
nificant byte of the result, and the C register to hold the
least significant byte of the result.

The 16-bit right shift of the result is performed by two
rotate-right-through-carry instructions:

Zero carry and then rotate B

Then rotate C to complete the shift

Since the multiplication routine described above uses

And so on, until step eight produces:

BITO' MCND' 2° + BITl • MCND • 2 1 + ... +BIT7 •

MCND' 27

Step two produces:

((BITO' MCND • 28 ) • 2- 1 + (BITl • MCND • 28 )) • 2- 1

= BITO' MCND • 26 + BITl • MCND' 2 7

Step 1: Test multiplier a·bit; it is a, so shift 16-bH result
right one bit.

Step 2: Test multiplier l·bit; it is a, so shift 16·bit result
right one bit.

Step 3: Test multiplier 2·bit; it is 1, so add 2AH to high
order byte of result and shift 16-bit result right one
bit.

Step 4: Test multiplier 3-bit; it is 1, so add 2AH to high
order byte of result and shift 16-bit result right one
bit.

Step 5: Test multiplier 4-bit; it is 1, so add 2AH to high
order byte of result and shift 16-bit resu It right one
bit.

Step 6: Test multipl ier 5-bit; it is 1, so add 2 AH to high
order byte of result and sh ift 16-bit resu It right one
bit.

Step 7: Test multiplier 6-bit; it is a, so shift 16-bit result
right one bit.

Step 8: Test multiplier 7-bit; it is 0, so shift 16-bit result
right one bit.

The result produced is 09D8.

The process works for the following reason:

The result of any multiplication may be written:

Equation 1: BIT7'MCND'27 + BIT6'MCND'26 + ...
+B ITO' MCND '2°

where BITO through BITS are the bits of the multiplier (each
equal to zero or one). and MCND is the multiplicand.

For example:

MULTIPLICAND MULTIPLIER
00001010 00000101

0'OAH'2 7 + 0'OAH'26 + 0'OAH'25 + 0'OAH'24 +

O'OAH':z3 + l' OAH' 22 + O'OAH' 21 + l·OAH· 2° =

00101000 + 00001010 = 00110010 = 5010

Adding the multipl icand to the high-order byte of the
result is the same as adding MCND' 28 to the full 16-bit
result; shifting the 16-bit result one position to the right is
equivalent to multiplying the result by 2-1 (dividing by 2).

Therefore, step one above produces:

(BITO' MCND • 28 ) • 2- 1

which is equivalent to Equation 1 above, and therefore is
the correct result.

54



MULTIBYTE ADDITION AND
'-~ SUBTRACTION

32AF8A
+ 84BA90

B76A1A

The carry bit and the ADC (add with carry) instruc
tions may be used to add unsigned data quantities of arbi
trary length. Consider the following addition of two three
byte unsigned hexadecimal numbers:

This addition may be performed on the 8080 by add

ing the two low-order bytes of the numbers, then adding

the resulting carry to the two next-higher-order bytes, and

so on:

BA

90

84

90 -

Label Code Operand Comment

MADD: LXI B,FIRST ; Band C address FIRST
LXI H,SECND; Hand L address SECND
XRA A ; Clear carry bit

LOOP: LDAX B ; Load byte of FIRST
ADC M ; Add byte of SECND

; with carry
STAX B ; Store result at FI RST
DCR C ; Done if C = a
JZ DONE
lNX B ; Point to next byte of

; FIRST
INX H ; Point to next byte of

;SECND
JMP LOOP ; Add next two bytes

DONE:

FiRST: DB 90H
DB OBAH
DB 84H

SECND: DB 8AH
DB OAFH
DB 32H

Memory
Location before after

FIRST 8A -++ + lA ) carry

FIRST+l AF -+~ 6A ) carry

FIRST+2 32 +..::.+ B7
...

The result will be stored from low-order byte to high
order byte beginning at memory location FIRST, replacing
the original contents of these locations.

SECND

SECND+l BA

SECND+2 84

8A

90

lA

ca"y = J

AF

BA

6A

rcarry = 1

32

84

B7

DIV: MVI E,9 ; Bit counter
MOV A,B

DIVa: MOV B,A
MOV A,C ; Rotate carry into C

; register; rotate next
; most significant bit
; to carry

MOV C,A
DCR E
JZ DIV2
MOV A,B ; Rotate most significant
RAL ; bit to high-order
JNC DIVl ; quotient
SUB D ; Subtract divisor & loop
JMP DIVa

DIV1: SUB D ; Subtract divisor. If
; less than high-order

JNC DiVa ; quotient, loop.
ADD D ; Otherwise, add it back
JMP DIVa

DIV2: RAL
MOV E,A
MVI A,OFFH ; Complement the quotient
XRA C
MOV C,A
MOV A,E
RAR

DONE:

The following routine will perform this multibyte ad
dition, making these assumptions:

The C register holds the length of each number to be
added (in this case, 31-

The numbers to be added are stored from low-order
byte to high-order byte beginning at memory locations
FIRST and SECND, respectively.

Since none of the instructions in the program loop
affect the carry bit except ADC, the addition with carry will
proceed correctly.

When location DON E is reached, bytes FIRST through
FIRST+2 will contain lA6AB7, which is the sum shown at
the beginning of this section arranged from low-order to
high-order byte.

55 Rev. 8



The carry (or borrow) bit and the SBB (subtract with
borrow) instruction may be used to subtract unsigned data
quantities of arbitrary length. Consider the following sub
traction of two two-byte unsigned hexadecimal numbers:

1301
- 0503

ODFE

This subtraction may be performed on the 8080 by
subtracting the two low-order bytes of the numbers, then
using the resulting carry bit to adjust the difference of the
two higher-order bytes if a borrow occurred (by using the
SBB instruction).

Low-order subtraction (carry bit = 0 indicating no
borrow):

00000001 = 01 H
11.111101 = -(03H+carry)
11111110= OF EH, the low-order result

carry out = 0, setting the Carry bit = 1, indicating a borrow

High-order subtraction:

00010011 = 13H
11111010= -(05H+carry)
00001101

carry out = 1, resetting the Carry bit indicating no borrow

Whenever a borrow has occurred, the SBB instruction
increments the subtrahend by one, which is equivalent to
borrowing one from the minuend.

In order to create a multibyte subtraction routine, it
is necessary only to duplicate the multi byte addition routine
of this section, changing the ADC instruction to an SBB in
struction. The program will then subtract the number begin
ning at SECND from the number beginning at FI RST, plac
ing the result at FI RST.

DeCIMAL ADDITION

Any 4-bit data quantity may be treated as a decimal
number as long as it represents one of the decimal digits
from 0 through 9, and does not conta in any of the bit pat
terns representi ng the hexadecimal digits A through F. In
order to preserve this decimal interpretation when perform
ing addition, the value 6 must be added to the 4-bit quantity

whenever the addition produces a result between 10 and 15.
This is because each 4-bit data quantity can hold 6 more
combinations of bits than there are deci mal digits.

Decimal addition is performed on the 8080 by letting
each 8.bit byte represent two 4-bit decimal digits. The bytes
are summed in the accumulator in standard fashion, and the
DAA (decimal adjust accumulator) instruction is then used
as in Section 3, to convert the 8-bit binary result to the cor
rect representation of 2 decimal digits. The settings of the
carry and auxiliary carry bits also affect the operation of the
DAA, permitting the addition of decimal numbers longer
than two digits.

56

To perform the decimal addition:

2985
+ 4936

7921

the process works as follows:

(1) Clear the Carry and add the two lowest-order digits of

each number (remember that each 2 decimal digits are
represented by one byte).

85 = 10000101B
36 = 00110110B

carry 0

Qj 10111011B
~ "-

Carry = 0 / "'" Auxiliary Carry = 0

The accumulator now contains BBH.

(2) Perform a DAA operation. Since the rightmost four
bits are;;" 100, 6 will be added to the accumulator.

Accumulator = 10111011B
6 = 011 DB

11000001 B

Since the leftmost 4 bits are now 910, 6 will be added
to these bits, setting the Carry bit.

Accumulator = 11000001 B
6 = 0110 B

1] 00100001B

"carry bit = 1

The accumulator now contains 21 H. Store these two
digits.

(3) Add the next group of two digits:

29 = 00101001B
49 = 01001001B

carry = 1
0I01110011B

7< "-

Carry = 0 / "" Auxiliary Carry = 1

The accumulator now contains 73H.

(4) Perform a DAA operation. Since the Auxiliary Carry
bit is set, 6 will be added to the accumulator.

Accumulator = 01110011 B

6 = _---.J!11QB
a01111001B

'"
\ carry bit = 0

Since the leftmost 4 bits are <10 and the Carry bit is
reset, no further action occurs.

Thus, the correct decimal result 7921 is generated in
two bytes.

A routine which adds decimal numbers, then, is exact
ly analogous to the multibyte addition routine MADD of the
last section, and may be produced by inserting the instruc
tion DAA after the ADC M instruction of that example.

Rev. B



Each iteration of the program loop will add two decimal
digits (one byte) of the numbers.

DECI MAL SUBTRACTION

Each 4-bit data quantity may be treated as a decimal
number as long as it represents one of the decimal digits 0
through 9. The OAA (decimal adjust accumulator} instruc
tion may be used to permit subtraction of one byte (repre
senting a 2-digit decimal number) from another, generating
a 2-digit decimal result. In fact, the OAA permits subtraction
of multidigit decimal numbers.

The process consists of generating the hundred's com
plement of the subtrahend digit (the difference between the
subtrahend digit and 100 decimal), and adding the result to
the minuend digit. For instance, to subtract 340 from 560,
the hundred's complement of 340 (1000-340=660) is
added to 560, producing 1220, which when truncated to 8
bits gives 220, the correct result. If a borrow was generated
by the previous subtraction, the 99's complement of the
subtrahend digit is produced to compensate for the borrow.

I n detail, the procedure for subtracting one multi-digit
decimal from another is as follows:

(1) Set the Carry bit = 1 indicating no borrow.

(2) Load the accumulator with 99H, representing the
number 99 decimal.

(3) Add zero to the accumulator with carry, producing
either 99H or 9AH, and resetting the Carry bit.

(4) Subtract the subtrahend digits from the accumulator,
producing either the 99's or 100's complement.

(5) Add the minuend digits to the accumulator.

(6) Use the OAA instruction to make sure the result in
the accumulator is in decimal format, and to indicate
a borrow in the Carry bit if one occurred.

Save this result.

(7) If there are more digits to subtract, go to step 2.

Otherwise, stop.

Example:

Perform the decimal subtraction:

43580
- 13620

29960

{1) Set ca rry = 1.

(2) Load accumulator with 99H.

(3) Add zero with carry to the accumulator, producing
9AH.

51

Accumulator = 10011001 B
o = OOOOOOOOB

Carry 1
10011010B = 9AH

(4) Subtract the subtrahend digits 62H from the accumu
lator.

Accumulator = 10011010B
62H = 1001111 DB

IJ 00111 OOOB

(5) Add the minuend digits 58H to the accumulator.

Accumulator = 00111 OOOB
58H = 01011 OOOB

:a 1001 OOOOB = 90H

Carry = 0 /71 \ Auxiliary Carry = 1

(6) OAA converts accumulator to 96H (since Auxiliary
Carry = 1) and leaves Carry bit = 0 indicating that a
borrow occurred.

(7) Load accumulator with 99H.

(8) Add zero with carry to accumulator, leaving accumu
lator = 99H.

(9) Subtract the subtrahend digits 13H from the accumu
lator.

Accumulator = 10011001B
13H = 11101101B

IJ 1000011 DB

(10) Add the minuend digits 43H to the accumulator.

Accumulator = 1000011 DB
43H = 01000011B

OJ 11001 001 B = C9H

Carry = 0 / \ Auxiliary Carry = 0

(11) OAA converts accumulator to 29H and sets the carry
bit = 1, indicating no borrow occurred.

Therefore, the result of subtracting 1362D from
43580 is 29960.

The following subroutine will subtract one 16
digit decimal number from another using the following
assumptions:

The minuend is stored least significant (2) digits first
beginning at location MINU.

The subtrahend is stored least significant (2) digits
first beginning at location SBTRA.

The result will be stored least significant (2) digits
first, replacing the minuend.



The symbol FIRST is set to F F H, then the macro
SBMAC is defined.

The first time SBMAC is referenced, the expansion
produced will be the following:

Label Code Operand

SBMAC

Label Code Operand

FIRST SET OFFH

SBMAC MACRO

CALL SUBR

IF FIRST
FIRST SET 0

JMP OUT
SUBR::

RET
OUT: NOP

ENDIF
ENDM

IF FIRST
Since FIRST is now equal to zero, the IF ~tatement

ends the macro expansion and does not calise the subroutine
to be generated again. The label SUBR !~ k'lOwn during this
expansion because it was defined globally (followed by two
colons in the definition).

RET
OUT: NOP

Since FIRST is non-zero when encountered during
this expansion, the statements between the IF and END IF
are assembled into the program. The first statement thus
assembled sets the value of FI RST to 0, while the remaining
statements are the necessary subrouti ne SUB R and a jump

around the subroutine. When this portion of the program is

executed, the subroutine SUB R will be called, but program
execution will not flow into the subroutine's definition.

On any subsequent reference to SBMAC i:l the pro
gram, however, the following expansion will be produced:

Label Code Operand

SBMAC

Label Code Operand Comment

DSUB: LXI D, MINU ; D and E address minuend
LXI H,SBTRA ; Hand L address subtra-

; hend
MVI C,8 ; Each loop subtracts 2

; digits (one byte),

; therefore program will

; subtract 16 digits.
STC ; Set Carry indicating

; no borrow
LOOP: MVI A,99H ; Load accumulator

; with 99H.
ACI 0 ; Add zero with Carry

SUB M ; Produce complement
; of subtrahend

XCHG ; Switch D and E with
; Hand L

ADD M ; Add minuend

DAA ; Decimal adjust
; accumulator

MOV M,A ; Store result

XCHG ; Reswitch D and E
; with Hand L

DCR C ; Done if C = 0
JZ DONE
INX D ; Address next byte

; of minuend

INX H ; Address next byte

; of subtrahend
JMP LOOP ; Get next 2 decimal digits

DONE: NOP

ALTERING MACRO EXPANSIONS

This section describes how a macro may be written

such that identicaireferences to the macro produce different
expansions. As a useful example of this, consider a macro
SBMAC which needs to call a subroutine SUBR to perform
its function. One way to provide the macro with the neces

sary subroutine would be to include a separate copy of the
subroutine in any program which contains the macro. A bet
ter method is to let the macro itself generate the subroutine
during the first macro expansion, but skip the generation of
the subroutine on any subsequent expansion. This may be
accomplished as follows:

Consider the following program section which consists
of one global set statement and the definition of SBMAC
(dashes indicate those assembly language statements neces
sary to the program, but irrelevant to th is discussion):

58

FIRS-T

SUBR:

CALL

IF

SET
JMP

CALL

SUBA

FIRST

o
OUT

SUBR



Device "a"
Transfers

Icontrol to Subroutine for
Supplies RST OH ) 0000

device "a"
0007

Transfers
Device "b"

control to ISubroutine for
Supplies RST 1H ) 0008 device "b"

oooF

RST OH

RST lH

with each teletype input interrupt. Then the subroutine
which processes data transmitted from the teletype to the
CPU will be called into execution via an eight-byte instruc
tion sequence at memory locations OOOOH to 0007H.

A digital input device may supply the instruction:

When the CPU recognizes an interrupt request from an
external device, the following actions occur:

(1) The instruction currently being executed is completed.

(2) The interrupt enable bit, INTE, is reset = O.

(3) The interrupting device supplies, via hardware, one in
struction which the CPU executes. This instruction
does not appear anywhere in memory, and the pro
grammer has no control over it, since it is a function
of the interrupting device's controller design. The
program counter is not incremented before this
instruction.
The instruction supplied by the interrupting device is

normally an RST instruction (see Chapter 2), since this is an
efficient one byte call to one of 8 eight-byte subroutines lo
cated in the first 64 words of memory. For instance, the
teletype may supply the instruction:

Then the subroutine that processes the digital input signals
will be called via a sequence of instructions occupying
memory ~ocations 0008H to OOOFH.

Program
Execution
Continues

Normal -----f----------=--=------,--+Program
Execution

Interrupt Service
Routine

INTERRUPT

Often, events occur external to the central processing
unit which require immediate action by the CPU. For exam
ple, suppose a device is receiving a string of 80 characters
from the CPU, one at a time, at fixed intervals. There are
two ways to handle such a situation:

(a) A program could be written which inputs the first
character, stalls until the next character is ready (e.g.,
executes a timeout by incrementing a sufficiently
large counter), then inputs the next character, and
proceeds in this fashion until the entire 80 character
string has been received.

This method is referred to as programmed I nput/

Output.

(b) The device controller could interrupt the CPU when a
character is ready to be input, forcing a branch from
the executing program to a special interrupt service

routine.

The interrupt sequence may be illustrated as follows:

The 8080 contains a bit named INTE which may be
set or reset by the instructions El and 01 described in

-......./ Chapter 2. Whenever INTE is equal to 0, the entire interrupt
handling system is disabled, and no interrupts will be
accepted.

59



Note that any of these 8-byte subroutines may in turn
call longer subroutines to process the interrupt, if necessary.

Any device may supply an RST instruction (and in
deed may supply any 8080 instruction).

The following is an example of an Interrupt sequence:

Device "x" Transfers
control to

Supplies RST 7H
0038 \ Subroutine for

---+ device "x"
003F

For example, suppose a program is interrupted just
prior to the instruction:

JC LOC

and the carry bit equals 1. If the interrupt subroutine hap
pens to zero the carry bit just before returning to the inter
rupted program, the jump to LOC which should have occur
red will not, causing the interrupted program to produce
erroneous results.

ARBITRARY
MEMORY ADDRESS INSTRUCTION

C

A

B

MOV C,B +-·---------1'",wupt f,om O,,'oe 13COB
3COC MOV E,A~

I
Device 1 supplies

IRST OH

Program Counter =

3COC pushed onto
the stack.

Control transferred

~
to 0000

0000 Instruction 1
Instruction 2

RET t
Stack popped into
program counter

Device 1 signals an interrupt as the CPU is executing
the instruction at 3COB. This instruction is completed. The
program counter remains set to 3COC, and the instruction
RST OH supplied by device 1 is executed. Since this is a
call to location zero,3COC is pushed onto the stand and pro
gram control is transferred to location OOOOH. (This subrou
tine may perform jumps, calls, or any other operation.)
When the RETURN is executed, address 3COC is popped off
the stack and replaces the contents of the program counter,
causing execution to continue at the instruction following
the point where the interrupt occurred.

Like any other subroutine then, any interrupt subrou
tine should save at least the condition bits and restore them
before performing a RETURN operation. (The obvious and
most convenient way to do this is to save the data in the
stack, using PUSH and POP operations.)

Further, the interrupt enable system is automatically
disabled whenever an interrupt is acknowledged. Except in
special cases, therefore, an interrupt subroutine should in
clude an EI instruction somewhere to permit detection and
handling of future interrupts. Any time after an EI is exe
cuted, the interrupt subroutine may itself be interrupted.
This process may continue to any level, but as long as all
pertinent data are saved and restored, correct program exe
cution will continue automatically.

WRITING INTERRUPT SUBROUTINES

In general, any registers or condition bits changed by
an interrupt subroutine must be restored before returning to
the interrupted program, or errors will occur.

A typical interrupt subroutine, then, could appear as
follows:

60



Code Operand Comment-----
PUSH PSW ; Save condition bits and accumulator

'--~ EI ; Re-enable interrupts

; Perform necessary actions to service
; the interrupt

POP PSW ; Restore machine status
RET ; Return to interrupted program

61



This appendix provides a summary of 8080 assembly language instructions. Abbreviations used are as follows:

A The accumulator (register A)

Bit n of the accumulator contents, where n may have any value from 0 to 7 and 0 is the least significant

(rightmost) bit

ADDR Any memory address

Aux. carry The auxiliary carry bit

Carry The carry bit

CODE An operation code

DATA 8 bits (one byte) of data

DATA16 16 bits (2 bytes) of data

DST Destination register or memory byte

EXP A constant or mathematical expression

INTE The 8080 interrupt enable flip-flop

lABEL: Any instruction label

M A memory byte

Parity The parity bit

PC Program Counter

PCH The most significant 8 bits of the program counter

'--""" PCl The least significant 8 bits of the program counter

REGM Any register or memory byte

vi



RP A register pair. Legal register pair symbols are:

B for registers Band C

D for registers D and E

H for registers Hand L
SP for the 16 bit stack pointer

PSW for condition bits and register A

RP1 The first register of register pair RP

RP2 The second register of register pair RP

Sign The sign bit

SP The 16-bit stack pointer register

SRC Source register or memory byte

Zero The zero bit

XY The value obtained by concatenating the values X and Y

An optional field enclosed by brackets

Contents of register or memory byte enclosed by parentheses

Replace value on lefthand side of arrow with value on righthand side of arrow

CARRY BIT INSTRUCTIONS

Format:

CODE

[LABEL:]

DESCRIPTION

CODE

STC

CMC

(Carry) +-1 Set carry

(Carry) +-(Carry) Complement carry

Condition bits affected: Carry

SINGLE REGISTER INSTRUCTIONS

Format:

[LABEL:] INR REGM
-or-

[LABEL:} DCR REGM
-or-

[LABEL:] CMA
-or-

[LABEL:} DAA

vii



CODE DESCRIPTION

INR (REGM) +- (REGM)+l Increment reg ister REG M

DCR (REGM) +- (REGM)-l Decrement register REGM

CMA (A) +- (1\) Complement accumulator

DAA If (Ao-A3 ) > 9 or(Aux.Carry)=l, Convert accumulator

(A) +- (A)+6 contents to form

Then if (A4 -A7 ) > 9 or (Carry)= two decimal

1 (A) = (A) + 6 • 24 digits

Condition bits affected:

Format:

[LABEL:]

INR,DCR

CMA
DAA

NOP

Zero, sign, parity
None

Zero, sign, parity, carry, aux. carry

NOP INSTRUCTION

I CODE DESCRIPTION,--------
NOP - - - - - - - No operationL _
Condition bits affected: None

DATA TRANSFER INSTRUCTIONS

Format:

[LABEL:]

[LABEL:]

NOTE: SRC and DST not both = M

NOTE: RP = B or D

MOV
-or

CODE

DST,SRC

RP

CODE DESCRIPTION

MOV (DST) +- (SRC) Load register DST from register SRC

STAX ((RP)) +- (A) Store accumulator at memory location

referenced by the specified register pair

LDAX (A) +- ((RP)) Load accumulator from memory location
referenced by the specified register pair

Condition bits affected: None

viii



REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS

Format:

[LABEL:] CODE REGM

CODE DESCRIPTION

ADD (A) +- (A)+(REGM) Add REGM to accumulator

ADC (A) +- (A)+(R EGM)+(Carry) Add REGM to accumulator with carry

SUB (A) +- (AHREGM) Subtract REGM from accumulator

SBB (A) +- (A)-( REGM)-(Carry) Subtract REGM from accumulator with borrow

ANA (A) +- (A) AND (REGM) AND accumulator with REGM

XRA (A) +- (A) XOR (REGM) EXCLUSIVE-ORaccumulator with REGM

ORA (A) +- (A) OR (REGM) OR accumulator with REGM

CMP Condition bits set by (AHREGM) Compare REGM with accumulator

Condition bits affected:

ADD, ADC, SUB, SBB: Carry, Sign, Zero, Parity, Aux. Carry
ANA, XRA, ORA: Sign, Zero, Parity. Carry is zeroed.
CMP: Carry, Sign, Zero, Parity, Aux. Carry. Zero set if (A)=(REGM)

Carry set if (A) < (REGM)
Carry reset if (A) ~ (REGM)
Note: CMP treats (A) and (REGM) as unsigned

8-bit quantities.

ROTATE ACCUMULATOR INSTRUCTIONS
Format:

[LABEL] CODE

CODE DESCRIPTION

RLC (Carry) +- A 7 , A n+ 1, +- An' Ao +- A 7 Set Carry = A 7 , rotate accumulator left

RRC (Carry) +- A o, An +- A n+ 1 , A 7 +- A o Set Carry = A o, rotate accumulator right

RAL A n+ 1 +- An' (Carry) +- A 7 , A o +-(Carry) Rotate accumulator left through the Carry

RAR An +- A n+ 1 , (Carry) +- A o, A 7 +- (Carry) Rotate accumulator right through Carry

Condition bits affected: Carry

ix Rev. B



REGISTER PAl R INSTRUCTIONS
Format:

[LABEL:) CODE1 RP
-or-

[LABEL:) CODE2

NOTE: For PUSH and POP, RP=B, 0, H, or PSW
For DAD, INX, and DCX, RP=B, 0, H, or SP

I
CODE1 DESCRIPTION

PUSH ((SP)-1) +- (RP1). ((SP)-2) +- (RP2). Save RP on the stack

(SP) +- (SP)-2 RP=PSW saves accumulator and condition bits

POP (RP1) +- ((SP)+1), (RP2) +- ((SP)), Restore RP from the stack

(SP) +- (SP)+2 RP=PSW restores accumulator and condition bits

DAD (HL) +- (HL) + (RP) Add RP to the 16-bit number in Hand L

INX (RP) +-(RP)+1 Increment RP by 1

DCX (RP) +- (RP)-1 Decrement RP by 1

CODE2 DESCRIPTION

XCHG (H) ~ (D), (L) ~ (E) Exchange the 16 bit number in Hand L with
that in 0 and E

XTHL (L) ~ ((SP)). (H) ~ ((SP)+1) Exchange the last values saved in the stack
with Hand L

SPHL (SP) +- (H):(L) Load stack pointer from Hand L

Condition bits affected:

PUSH, INX, DCX, XCHG, XTHL, SPHL: None
POP : If RP=PSW, all condition bits are restored from the stack, otherwise none are affected.

DAD: Carry

IMMEDIATE INSTRUCTIONS

Format:

[LABEL:)

[LABEL:)

[LABEL:)

NOTE: RP=B, 0, H,orSP

LXI
-or

MVI
-ar
CODE

x

RP,DATA16

REGM, DATA

REGM



CODE DESCRIPTION

LXI (RP) +-DATA 16 Move 16 bit immediate Data into RP

MVI (REGM) +-DATA Move immediate DATA into REGM

ADI (A) +- (A) + DATA Add immediate data to accumulator

ACI (A) +-(A) + DATA + (Carry) Add immediate data to accumulator with Carry

SUI (A) +- (A) - DATA Subtract immediate data from accumulator

SBt (A) +- (A) - DATA - (Carry) Subtract immediate data from accumulator with
borrow

ANI (A) +- (A) AND DATA AND accumulator with immediate data

XRI (A) +- (A) XOR DATA EXCLUSIVE-OR accumulator with immediate data

ORI (A) +- (A) OR DATA OR accumulator with immediate data

CPt Condition bits set by (A)-DATA Compare immediate data with accumulator

Condition bits affected:

LXI, MVI: None
ADI, ACI, SUI, SBI: Carry, Sign, Zero, Parity, Aux. Carry
ANI, XRI, ORI: Zero, Sign, Parity. Carry is zeroed.
cpr: Carry, Sign, Zero, Parity, Aux. Carry. Zero set if (A) = DATA

Carry set if (A) < DATA
Carry reset if (A) ;;;;. DATA
Note: CPI treats (A) and DATA as unsigned

8-bit quantities.

Format:
DIRECT ADDRESSING INSTRUCTIONS

[LABEL:] CODE ADDR

CODE DESCRIPTION

STA (ADDR) +- (A) Store accumulator at location ADD R

LOA (A) +- (ADDR) Load accumulator from location ADDR

SHLD (ADDR) +- (Ll. (ADDR+1) +- (HI Store Land H at ADDR and ADDR+1

LHLD (Ll +- (ADDRI. (HI +- (ADDR+!) Load Land H from ADDR and ADDR+1

Condition bits affected: None

JUMP INSTRUCTIONS

Format:

[LABEL:]

[LABEL:]

PCHL
-or
CODE

xi

ADDR

Rev. 8



CODE DESCRIPTION

PCHL (PC) +-(HL) Jump to location specified by register Hand L

JMP (PC) +-ADDR Jump to location ADDR

JC If (Carry) = 1, (PC) +- ADDR
If (Carry) = 0, (PC) +- (PC)+3 Jump to ADDR if Carry set

JNC If (Carry) = 0, (PC) +- ADDR
If (Carry) = 1, (PC) +- (PC)+3 Jump to ADDR if Carry reset

JZ If (Zero) = 1, (PC) +- ADDR
If (Zero) = 0, (PC) +- (PC)+3 Jump to ADDR of Zero set

JNZ If (Zero) = 0, (PC) +- ADDR
If (Zero) = 1, (PC) +- (PC)+3 Jump to ADDR if Zero reset

JP If (Zero) = 0, (PC) +- ADDR
If (Zero) = 1, (PC) +- (PC)+3 Jump to ADDR if plus

JM If (Sign) = 1, (PC) +- ADDR
If (Sign) = 0, (PC) +- (PC)+3 Jump to ADDR if minus

JPE If (Parity) = 1, (PC) +- ADDR
If (Parity) = 0, (PC) +- (PC)+3 Jump to ADDR if parity even

JPO If (Parity) = 0, (PCI +- ADDR
If (Parity) = 1, (PC) +- (PC)+3 Jump to ADDR if parity odd

Condition bits affected: None

CALL INSTRUCTIONS
Format:

[LABEL: ] CODE ADDR
CODE DESCRIPTION

CALL ((SP)-l) +-(PCH), ((SP)-2) +-(PCLI, (SP) +-(SP)+2, (PC) +-ADDR

Call subroutine and push return address onto stack
CC If (Carry) = 1, ((SP)-l) +-(PCH), ((SP)-2) +-(PCLl, (SP) +-(SP)+2, (PC) +-ADDR

If (Carry) = 0, (PC) +- (PC)+3 Call subroutine if Carry set

CNC If (Carry) = 0, ((SP)-1) +-(PCHl, ((SP)-2) +-(PCL), (SPl +-(SP)+2, (PC) +-ADDR
If (Carry) = 1, (PC) +- (PC)+3 Call subroutine if Carry reset

CZ If (Zero) = 1, ((SP)-1) +-(PCH), ((SP)-21 +-(PCLl, (SP) +-(SP)+2, (PC) +-ADDR
If (Zero) = 0, (PC) +-(PC)+3 Call subroutine if Zero set

CNZ If (Zero) = 0, ((SP)-l) +-(PCH), ((SP)-2) +-(PCL), (SP) +-(SP)+2, (PC) +-ADDR
If (Zero) = 1, (PC) +- (PC)+3 Call subroutine if Zero reset

CP If (Sign) = 0, ((SP)-l) +- (PCH), ((SP)-2) +- (PCL), (SP) +- (SP)+2, (PC) +- ADDR
If (Sign) = 1, (PC) +- (PC)+3 Call subroutine if Sign plus

CM If (Sign) = 1, ((SP)-1) +-(PCH), ((SP)-2) +-(PCLl, (SP) +-(SP)+2, (PCI +-ADDR
If (Sign) = 0, (PC) +- (PC)+3 Call subroutine if Sign minus

CPE If (Parity) = 1, ((SP) -1) +-(PCH), ((SPI-2) +-(PCLI, (SP) +-(SP)+2, (PCI +-ADDR
If (Parity) = 0, (PCl +- (PC)+3 Call subroutine if Parity even

CPO If (Parity) = 0, ((SP)-1) +-(PCH), ((SPI-2) +-(PCL), (SP) +-(SP)+2, (PC) +-ADDR
If (Parity) = 1, (PC) +- (PC)+3 Call subroutine if Parity odd

Condition bits affected: None

xii



Format:

[lABEL:]

RETURN INSTRUCTIONS

CODE

CODE DESCRIPTION

RET (PCl) +-((SP)). (PCH) +-((SP)+1). (SP) +-(SP)+2
Return from subroutine

RC If (Carry) = 1, (PCl) +- ((SP)). (PCH) +- ((SP)+1). (SP) +- (SP) +2
If (Carry) = O. (PC) +- (PC)+1 Return if Carry set

RNC If (Carry) = 0, (PCl) +-((SP)), (PCH) +-((SP)+1). (SP) +-(SP)+2
If (Carry) = 1, (PC) +- (PC)+ 1 Return if Carry reset

RZ If (Zero) = 1, (PCl) +- ((SP)), (PCH) +- ((SP)+1). (SP) +- (SP)+2
If (Zero) = 0, (PC) +- (PC)+1 Return if Zero set

RNZ If (Zero) = 0, (PCl) +- ((SP)). (PCH) +- ((SP)+1). (SP) +- (SP) +- (SP)+2
If (Zero) = 1, (PC) +- (PC)+1 Return if Zero reset

RM If (Sign) = 1, (PCl) +- ((SP)). (PCH) +- ((SP)+1). (SP) +- (SP)+2
If (Sign) = 0, (PC) +- (PC)+1 Return if minus

RP If (Sign) = 0, (PCl) +- ((SP)), (PCH) +- ((SP)+1). (SP) +- (SP)+2
If (Sign) = 1. (PC) +- (PC)+ 1 Return if plus

RPE If (Parity) = 1, (PCl) +- ((SP)). (PCH) +- ((SP)+1). (SP) +- (SP)+2
If (Parity) = 0, (PC) +- (PC)+1 Return if parity even

RPO If (Parity) = O. (PCl) +-((SP)). (PCH) +-((SP)+1), (SP) +-(SP)+2
If (Parity) = 1, (PC) +- (PC)+ 1 Return if parity odd

Condition bits affected: None

RST INSTRUCTION

Format:

[lABEL:]

NOTE: OooB ~ EXP ~ 111B

RST EXP

CODE DESCRIPTION

RST ((SP)-1) +-(PCH). ((SP)-2) +-(PCl). (SP) +-(SP)+2
(PC) +- OOOOOOOOOOEXPOOOB Call subroutine at address specified by EXP

Condition bits affected: None

INTERRUPT FLIP-FLOP INSTRUCTIONS

Format:

[lABEL:] CODE

CODE DESCRIPTION

EI (INTE) +-1 Enable the interrupt system

DI (lNTE) +-0 Disable the interrupt system

Condition bits affected: None

xiii Rev. B



Format:

INPUT/OUTPUT INSTRUCTIONS

[LABEL:] CODE EXP

CODE DESCRIPTION

IN (A) +- input device Read a byte from device EXP into the accumulator

OUT output device +- (A) Send the accumulator contents to device EXP

Condition bits affected: None

HLT INSTRUCTION

Format:

[LABEL:] HLT

CODE DESCRIPTION

HLT ------------- Instruction execution halts until an interrupt occurs

Condition bits affected: None

PSEUDO - INSTRUCTIONS

ORG PSEUDO - INSTRUCTION

Format:

ORG EXP

CODE DESCRIPTION

ORG LOCATION COUNTER +- EXP Set Assembler location counter to EXP

Eau PSEUDO - INSTRUCTION

Format:

NAME EQU EXP

CODE DESCRIPTION

EQU NAME +- EXP Assign the value EXP to the symbol NAME

SET PSEUDO - INSTRUCTION

Format:

NAME SET EXP

CODE DESCRIPTION

SET NAME +- EXP Assign the value EXP to the symbol NAME, which

-- may have been previously SET.

xiv



Format:

CODE

END

Format:

END

IF

END PSEUDO - INSTRUCTION

DESCRIPTION

End the assembly

CONDITIONAL ASSEMBLY PSEUDO - INSTRUCTIONS

EXP
-and-

ENDIF

CODE DESCRIPTION

IF If EXP = 0, ignore assembler statements until END IF is reached. Otherwise, continue
assembling statements

ENDIF End range of preceding IF

MACRO DEFINITION PSEUDO - INSTRUCTIONS

Format:

NAME MACRO

-and-

ENDM

LIST

CODE DESCRIPTION

MACRO Define a macro named NAME with parameters LIST

ENDM End Macro definition

xv



This appendix summarizes the bit patterns and number of time states associated with every 8080 CPU instruction.

When using this summary, note the following symbology:

1) DDD represents a destination register. SSS represents a source register. Both DDD and SSS are interpreted as follows:

DDD or SSS

000
001
010
011
100
101
110
111

Interpretation

Register B
Register C
Register D
Register E
Register H
Register L
A memory register
The accumulator

2) Instruction execution time equals number of time periods multiplied by the duration of a time period.

A time period may vary from 480 nanosecs to 2 jJ.sec.

Where two numbers of time periods are shown (eq. 5/11), it means that the smaller number of time periods will be
required if a condition is not met, and the larger number of time periods will be required if the condition is met.

----
MNEMONIC D7 D6 Ds D4 D3 D2 D 1 Do NUMBER OF TIME PERIODS

CALL 1 1 0 0 1 1 0 1 17
CC 1 1 0 1 1 1 0 0 11/17
CNC 1 1 0 1 0 1 0 0 11/17
CZ 1 1 0 0 1 1 0 0 11/17
CNZ 1 1 0 0 0 1 0 0 11/17
CP 1 1 1 1 0 1 0 0 11/17
CM 1 1 1 1 1 1 0 0 11/17
CPE 1 1 1 0 1 1 0 0 11/17
CPO 1 1 1 0 0 1 0 0 11/17
RET 1 1 0 0 1 0 0 1 10
RC 1 1 0 1 1 0 0 0 5/11
RNC 1 1 0 1 0 0 0 0 5/11
RZ 1 1 0 0 1 0 0 0 5/11
RNZ 1 1 0 0 0 0 0 0 5/11
RP 1 1 1 1 0 0 0 0 5/11
RM 1 1 1 1 1 0 0 0 5/11
RPE 1 1 1 0 1 0 0 0 5/11
RPO 1 1 1 0 0 0 0 0 5/11

xvi



MNEMONIC D7 D6 Ds D4 D3 D2 D 1 Do NUMBER OF TIME PERIODS

RST 1 1 A A A 1 1 1 11
IN 1 1 0 1 1 0 1 1 10

OUT 1 1 0 1 0 0 1 1 10

LXI B 0 0 0 0 0 0 0 1 10
LXID 0 0 0 1 0 0 0 1 10
LXIH 0 0 1 0 0 0 0 1 10
LXISP 0 0 1 1 0 0 0 1 10
PUSH B 1 1 0 0 0 1 0 1 11
PUSH D 1 1 0 1 0 1 0 1 11
PUSH H 1 1 1 0 0 1 0 1 11
PUSH PSW 1 1 1 1 0 0 0 1 11
POP B 1 1 0 0 0 0 0 1 10
POP D 1 1 0 1 0 0 0 1 10
POP H 1 1 1 0 0 0 0 1 10
POP PSW 1 1 1 1 0 0 0 1 10
STA 0 0 1 1 0 0 1 0 13

LDA 0 0 1 1 1 0 1 0 13

XCHG 1 1 1 0 1 0 1 1 4
XTHL 1 1 1 0 0 0 1 1 18
SPHL 1 1 1 1 1 0 0 1 5
PCHL 1 1 1 0 1 0 0 1 5
DAD B 0 0 0 0 1 0 0 1 10

DAD D 0 0 0 1 1 0 0 1 10
DAD H 0 0 1 0 1 0 0 1 10
DAD SP 0 0 1 1 1 0 0 1 10

STAX B 0 0 0 0 0 0 1 0 7

STAX D 0 0 0 1 0 0 1 0 7

LDAX B 0 0 0 0 1 0 1 0 7

LDAX D 0 0 0 1 1 0 1 0 7

INX B 0 0 0 0 0 0 1 1 5
INXD 0 0 0 1 0 0 1 1 5
INX H 0 0 1 0 0 0 1 1 5
INX SP 0 0 1 1 0 0 1 1 5
MOVrl,r2 0 1 D D D S S S 5

MOV M, r 0 1 1 1 0 S S S 7

MOV r, M 0 1 D D D 1 1 0 7

HLT 0 1 1 1 0 1 1 0 7

MVI r 0 0 D D D 1 1 0 7

MVI M 0 0 1 1 0 1 1 0 10

INR 0 0 D D D 1 0 0 5
DCR 0 0 D D D 1 0 1 5
INR A 0 0 1 1 1 1 0 0 5

DCR A 0 0 1 1 1 1 0 1 5

INR M 0 0 1 1 0 1 0 0 10

DCR M 0 0 1 1 0 1 0 1 10

ADDr 1 0 0 0 0 S S S 4
ADCr 1 0 0 0 1 S S S 4
SUB r 1 0 0 1 0 S S S 4
SBB r 1 0 0 1 1 S S S 4
AND r 1 0 1 0 0 S S S 4

XRAr 1 0 1 0 1 S S S 4

ORAr 1 0 1 1 0 S S S 4

eMP, i~
1 1 1 S S S 4

ADD M 1 0 0 0 0 1 1 0 7

ADC M 1 0 0 0 1 1 1 0 7
_________ L-_

xvii Rev. B



-

MNEMONIC 0 7 0 6 05 0 4 0 3 O2 0 1 DO NUMBER OF TIME PERIODS

SUB M 1 0 0 1 0 1 1 0 7
SBB M 1 0 0 1 1 1 1 0 7
ANOM 1 0 1 0 0 1 1 0 7
XRAM 1 0 1 0 1 1 1 0 7
ORAM 1 0 1 1 0 1 1 0 7

CMPM 1 0 1 1 1 1 1 0 7

AOI 1 1 0 0 0 1 1 0 7
ACI 1 1 0 0 1 1 1 0 7
SUI 1 1 0 1 0 1 1 0 7

SBI 1 1 0 1 1 1 1 0 7

ANI 1 1 1 0 0 1 1 0 7

XRI 1 1 1 0 1 1 1 0 7

ORI 1 1 1 1 0 1 1 0 7
CPI 1 1 1 1 1 1 1 0 7

RlC 0 0 0 0 0 1 1 1 4
RRC 0 0 0 0 1 1 1 1 4
RAl 0 0 0 1 0 1 1 1 4
RAR 0 0 0 1 1 1 1 1 4
JMP 1 1 0 0 0 0 1 1 10
JC 1 1 0 1 1 0 1 0 10
JNC 1 1 0 1 0 0 1 0 10
JZ 1 1 0 0 1 0 1 0 10
JNZ 1 1 0 0 0 0 1 0 10
JP 1 1 1 1 0 0 1 0 10
JM 1 1 1 1 1 0 1 0 10
JPE 1 1 1 0 1 0 1 0 10
JPO 1 1 1 0 0 0 1 0

I

10

OCXB 0 0 0 0 1 0 1 1 5
OCXO 0 0 0 1 1 0 1 1 5
DCXH 0 0 1 0 1 0 1 1 5
OCXSP 0 0 1 1 1 0 1 1 5
CMA 0 0 1 0 1 1 1 1 4
STC 0 0 1 1 0 1 1 1 4
CMC 0 0 1 1 1 1 1 1 4
DAA 0 0 1 0 0 1 1 1 4
SHlO 0 0 1 0 0 0 1 0 16
lHlO 0 0 1 0 1 0 1 0 16
EI 1 1 1 1 1 0 1 1 4
DI 1 1 1 1 0 0 1 1 4
NOP 0 0 0 0 0 0 0 0 4

xviii



The 8080 uses a seven-bit ASCII code, which is the normal 8 bit ASCII code with the parity (high-order) bit always
reset.

GRAPHIC OR CONTROL ASCII (HEXADECIMAL) GRAPHIC OR CONTROL ASCII (HEXADECIMAL)

NULL 00 ACK 7C
SOM 01 Alt. Mode 70
EOA 02 Rubout 7F
EOM 03 ! 21
EOT 04 22
WRU 05 ,.,. 23
RU 06 $ 24
8ELL 07 % 25
FE 08 & 26
H. Tab 09 27
Line Feed OA 28
V. Tab 08 29
Form OC 2A
Return 00 + 28
SO OE 2C
SI OF 20
OCO 10 2E
X-On 11 / 2F
Tape Aux. On 12 3A
X-Off 13 38
Tape Aux. Off 14 < 3C
Error 15 3D
Sync 16 > 3E
LEM 17 ? 3F
SO 18 [ 58
S1 19 \ 5C
S2 1A ] 50
S3 18 t 5E
S4 1C +-- 5F
S5 10 @ 40

~ S6 1E blank 20
57 1F 0 30

xx



GRAPHIC OR CONTROL ASCII (HEXADECIMAL)

1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39
A 41
B 42
C 43
D 44
E 45
F 46
G 47
H 48
I 49
J 4A
K 48
L 4C
M 40
N 4E
0 4F
P 50
Q 51
R 52
S 53
T 54
U 55
V 56
W 57
X 58

Iy 59
Z 5A

I
I

I

~
xxi



-
xxii



POWERS OF TWO

2
n -n

n 2

1 a 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125 ---268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 55241 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
2 251 799 813 685 248 51 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509 481 984 54 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
36 028 797 018 963 968 55 0000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 676 950 125
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

xxiii



TABLE OF POWERS OF SIXTEEN IO

16n
n 16-n

1 0 0.10000 00000 00000 00000 x 10
16 1 0.62500 00000 00000 00000 X 10- 1

256 2 0.39062 50000 00000 00000 X 10-2

4 096 3 0.24414 06250 00000 00000 X 10-3

65 536 4 0.15258 78906 25000 00000 x 10-4

1 048 576 5 0.95367 43164 06250 00000 x 10-6

16 777 216 6 0.59604 64477 53906 25000 x 10-7

268 435 456 7 0.37252 90298 46191 40625 x 10-8

4 294 967 296 8 0.23283 06436 53869 62891 x 10-9

68 719 476 736 9 0.14551 91522 83668 51807 x 10- 10

1 099 511 627 776 10 0.90949 47017 72928 23792 x 10- 12

17 592 186 044 416 11 0.56843 41886 08080 14870 x 10- 13

281 474 976 710 656 12 0.35527 13678 80050 09294 x 10-14

4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 10- 15

72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10- 16

152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10- 18

TABLE OF POWERS OF 1016

10n
n 10-n

1 0 1.0000 0000 0000 0000
A 1 0.1999 9999 9999 999A

64 2 0.28F5 C28F 5C28 F5C3 x 16- 1

3E8 3 0.4189 3748 C6A7 EF9E x 16-2

2710 4 0.6808 8BAC 710C 8296 x 16-3

1 86AO 5 0.A7C5 AC47 1B47 8423 x 16-4

F 4240 6 0.10C6 F7AO 85EO 8037 x 16-4

98 9680 7 0.1 A07 F29A BCAF 4858 x 16 -5

5F5 E100 8 0.2AF3 lOC4 6118 73BF x 16-6

389A CAOO 9 0.44B8 2FAO 9B5A 52CC x 16 -7

2 5408 E400 10 0.60F3 7F67 SEF6 EAOF x 16-8

17 4876 E800 11 0.AFE8 FFOB CB24 AAFF x 16-9

E8 04A5 1000 12 0.1197 9981 20EA 1119 x 16-9

918 4E72 AOOO 13 0.1 C25 C268 4976 81C2 x 16 -10

5AF3 107A 4000 14 0.2009 3700 4257 3604 x 16- 11

3 807E MC6 8000 15 0.480E BE7B 9058 5660 x 16 -12

23 8652 6FC1 0000 16 0.734A CA5F 6226 FOAE x 16- 13

163 4578 508A 0000 17 0.B877 AA32 36M B449 x 16- 14

OEO B683 A764 0000 18 0.1272 5001 0243 A8A1 x 16 -14

8AC7 2304 89E8 0000 19 0.1083 C94F 8602 AC35 x 16- 15

xxiv



HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range O-FFF and decimal integers in the

range 0-4095. For conversion of larger integers, the table values may be added to the following figures:

Hexadecimal

01000
02000
03000
04000
05000
06000
07000
08000
09 000
OAOOO
DB 000
DC 000
00000
OE 000
OF 000
10 000
11000
12000
13000
14000
15000
16000
17000
18000
19000
lA 000
1BODO
lC 000
10000
1E 000
1F 000

Decimal

4096
8192

12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440
65536
69632
73728
77 824
81 920
86016
90112
94208
98304

102400
106496
110592
114688
118 784
122880
126976

Hexadecimal

20000
30000
40000
50000
60000
70000
80000
90000
AO 000
BO 000
CO 000
DO 000
EO 000
FO 000

100000
200000
300000
400000
500000
600000
700000
800000
900000
ADO 000
BOO 000
COO 000
000000
EOO 000
FOO 000

1 000000
2000000

Decimal

131 072
196608
262144
327680
393216
458752
524288
589824
655360
720896
786432
851 968
917504
983040

1 048576
2097 152
3 145728
4 194304
5242880
6291 456
7340032
8388608
9437 184

10485760
11 534336
12582912
13631 488
14680064
15728640
16777216
33554432

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

xxv



HEXAOECIMAl-OECIMAlINTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F
100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 (\11111 0415U"'TI""

1AO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
1BO 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

1CO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1EO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1FO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
2BO 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
200 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831,

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3BO 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
300 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

xxvi



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
500 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
600 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

xxvii Rev. B



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cant'd)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

8CO 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EO 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
900 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

xxviii



HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

AOO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
B10 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

B40 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

,----"

xxix Rev. B



--

HEXADECIMAL·DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

DOO 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
Dl0 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D20 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

D40 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

D80 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

Eoo 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
E10 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3"159
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

xxx Rev. B



INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 246-7501

,

",._,..."../

.--
:< -

© 1975 Printed in U.S.A. MCS-482-0275/15K


