
computer
- m m n t 5 0 3

September

' 7 7
Volume 3 I s s u e 4

buHd your own
C R T . . . t n t e r f a c e . . .

R o b o t . . . ! . C . T e s t C ! i p

n o o K ^ s

24S()A)amoS.E.

l505}*243-782t

16K
Memory for $360

The Aitair 8&16MCDof{ers many

the 88-16MCD can be used in any Affair Bus

piug-in boards, the 88 MMCD consumes litlle

S360?or)et us do the honors at $395*

SUBMiTTAL SPEC!F!CAT)ONS
Articles submitted to Computer Notes should be

typed, double-space, with the author's name, address
and the date in the upper left-hand corner of each numbered
page. Authors should also include a one-sentence auto-
biographical statement about their job, professional title,
previous electronic and/or computer experience under
the article's title. Authors should retain a copy of each
article submitted.

All illustrations, diagrams, schematics and other graphic
material should be submitted in black ink on smooth white
paper. Prints and PMT's are acceptable. No pencil draw-
ings unless properly "fixed'.' No halftone or wash drawings.

All artwork should be mailed flat, never folded. Unless
requested, graphics are not returned. Sketches, roughs
and "idea" drawings are generally not used.

Photos, charts, programs and figures should be clearly
labelled and referred to by number within the text of
the manuscript .

Only clear, glossy black and white photos (no Polaroid
pictures) will be accepted. Photos should be taken with
uniform lighting and sharp focus.

Program listings should be recorded with the darkest
ribbon possible on blank white paper. A paper tape for
each program submitted must also be included.

C O M P U T E R N O T E S is published monthly by !VHTS,)nc . , 2 4 5 0 A lamo SE, Albuquer-
que, NM, 8 7 1 0 6 , (5 0 5) 243-7821 . A free year's subscription is included with every
purchase of an Altair^ computer. Regular subscriptions can be ordered from the tVHTS
Customer Service Dept. for $ 5 per year in the U.S. and $ 2 0 per year for overseas. Single
copies are available for 5 0 C each at all A ! t a i r C o m p u t e r C e n t e r s . Entire contents
copyright, 1977 , tVHTS,)nc . Send articles, questions, comments and suggest ions to
Editor, C O M P U T E R N O T E S , M ! T S , !nc .

tVMTS, tnc. 1 9 7 7 (Volume 3, Issue 4 , Sep tember , 1977)

2 4 5 0 A lamo S.E., Albuquerque, New Mexico 8 7 1 0 6 Pertec C o m p u t e r Corporation

NEED AN tNEXPENStVE CRT?
Buitd One Using an

Attair 8800-Compat ib !e tnterface Card
By Jim Wiggins

400 Pemberton Terrace

#116

Kamloops, B.C. Canada V2C1T3

Wiggins is an avid microcomputer hobbyist

who pians to return to school to make

computers his vocation.

The CRT terminal and the floppy disc
system currently seem to be the most
desirable peripherals for microcomputer
users. However, they are also the most
expensive and for this reason the literature
is replete with techniques for hobbyists
to inexpensively built or buy their own.
The following article describes how a
relatively inexpensive, high-quality CRT
terminal can be constructed using a com-
mercial Video Ram (VRAM) and an Altair
8800 compatible interface card.

The heart of the terminal is the VRAM

($390), which is manufactured by:

Matrox Electronic Systems

P.O. Box 56, Ahuntsic Stn.

Montreal, Quebec

Canada, H3L 3N5

The card itself, which unfortunately

will not fit inside the Altair Computer case,

consists of 2K of memory for a display of

24 lines of 80 characters per line with each

character being displayed in a 7 x 9 dot

matrix format. The character set used in

the standard MTX 2480A is the 128 charac-

ter ASCII+Greek. Custom designed as

well as several other standard character

fonts are also available. Because the

required video signal is generated from the

on-card memory, DMA is not required, and

the card is read from and written into as if

it were normal processor memory.

.'t- '̂Mys

Although the card contains 2K of memory,

it appears as 4K on the address bus. This

is due to the address decoding scheme.

(See Fig. 1). Address lines A6 to AO

inclusive access columns 0 to 79, and

address lines A7 to A l l access lines 0 to

23, while column addresses 80 to 127 and

line addresses 24 to 31 are ignored. In a

sense, this wastes memory address space,

cont inued

EO!TOR
AndreaLewis

ASStSTANT EOtTOR
LindaBlocki

PROOUCTtON
A! McCahon
SteveWedeen
Beverly Gallegos
Lucy Ginley

CONTRtBUTORS

Dave Antreasian

Bruce Fowler

J a m e s A. Gupton , Jr.

Robert Rossum

Mike Smith

J im Wigg ins

197 7

2450 Alamo S.E.
Albuquerque, New Mexico 87106

! N T H) S ! S S U E

Need an inexpensive CRT? 1

Carefui But) in the China Shop — 4

Buiid Your Own interface 8

Students Deveiop)C Logic Test Ctip for Aitair 680b 15

What's Microcomputer Ciass Without an Aitair 8800b 16

Programmabie i /O Made Possibie With the P!A . . . 18

Gtitches: Troubteshooting the 88-4P)0 20

CN/September, 1977 Fifteen

NEED A N !NEXPENS)VE C R T ?
continued

but it isn't a real concern unless you have

62K memory.

Another important feature of the card

is the data bus, which is bidirectional and 9

bits wide. Bits 0 through 6 comprise the

character code, and bits 7 and 8 are used to

select one of four display modes (for each

character): normal (00), half intensity (10),

inverse video (01), and blink at 1 Hz rate

(11). In order to simplify the interface

card, I have tied bits 7 and 8 together so

that characters are either norma! or

blinking. However, other combinations,

such as normal/inverse or inverse/blink,

can be obtained quite easily.

In addition to the address and data

lines, there are several other input and

output lines from the VRAM used by the

display monitor and the interface card.

Since both the composite (logic plus sync)

and the logical video signals as weil as the

horizontal and vertical blanking pulses are

available, there are only a few restrictions

on the type of monitor used. One restric-

tion is that the monitor must have a

bandwidth of 10 Mhz minimum. It must

also have a long persistance phosphor if

the 128 character set fonts are used. The

one 64 character font (5 x 7 dot matrix),

upper case ASCII, is the exception to this

in that a monitor with a standard phophor

may be used. For readability, Matrox

recommends that the monitor be 12 inches

or larger. The vertical blanking (BV) from

the VRAM is also used by the interface

card as a status signal to control access to

the VRAM card itself.

Although the VRAM may be read from

or written into during the beam trace time,

a noticeable flicker results. For this

reason, the BV signal and the interface

card ensure that access to the card is

during vertical retrace (4.61 msec). The

chip select (CS), which is active low for

read and write, and read/write (R/W),

which is active low for write, are the only

control signals from the interface card to

the VRAM required for operation. Al-

though the actual timing relationships are

not shown here, they are similar to those

for the memory chips themselves, i.e.

2102-1. The minimum read and write

cycle times for these chips are 500 ns,

which makes it technically possible to

access VRAM without memory wait states.

However, because the VRAM is separated

from the interface card by six feet of ribbon

cable, two wait states are used to ensure

that data is stable during the write pulse or

the processor read pulse DBIN.

The interface card itself is shown in

Figure 2 with IC A used to request the

required wait states. Before examining the

circuit, I would like to thank MITS for their

indirect assistance in the design of this

interface card. Owners of the MITS IK

Static and S10B cards will note a distinct

resemblance in the decoding, wait state

generation, and interrupt enable circuitry.

Twenty-Two CN/September, 1977

(Apart from these areas of similarity, the

design is all mine; patents are pending.)

Not shown on the schematic of Figure 2 are

2 hex buffers for the 12 address lines and

pull-up resistors on the 8 data lines. While

the Altair computer uses separate input

and output busses, the VRAM uses a

bidirectional bus which is split, using

8T97s, ICs, F, G, and H. Four gates of F

and 4 of G comprise the data in, and 6 of H

and 2 of G are used for data out. To the left

of the schematic, the ICs N and 0 select

either the data out or data in lines, depend-

ing on the states of SOUT, SIMP, SMEMR

and, of course, the address lines A12 to

A15 (IC N6). DI is selected through IC 0

pin 6, and DO is selected through IC 0 pin

3. IC 0 pin 8 is active low during both read

and write operations. It is this signal

applied to IC L pin 12 plus the BV signal

applied to IC L pin 13 that produces the

chip select (CS) pulse at IC L pin 8. CS is

also, possibly unnecessarily, a function of

M l , because IC 0 8 will go low during the

latter part of M l . IC L pin 11 also enables

two gates of IC F via pin 15 of F. The R /W

signal is applied through one to the VRAM,

and the other is the source of the PRDY

signal to the processor.

There's also output port on the

interface card. It's used for interrupt

enable, which consists of the RS flip-flop

comprised of the 4 gates of IC B. Data on

the D01 line sets or resets this FF, and the

effective write pulse for the port is gener-

ated when IC L pin 6 goes low. The output

at IC L pin 6 is a function of PWR (IC L 2),

SOUT (IC D 9), and the port address

applied to pins, 1, 2, 4, and 5 of IC N. In

this situation, it is the 4 most significant

bits of the port address (which appears on

both the upper and lower halves of the

address bus) that cause the port to be

selected. IC N 6 thus performs the dual

purpose of selecting the output port as well

as the memory space of the VRAM. This

scheme does restrict users to 240D output

ports, but that should be more than suffi-

cient. The execution of the instruction

OUT 350 will, therefore, set or reset the

FF, the output of which is applied to enable

the interrupt gate at pin 4 of IC D. The

signal that produces the interrupt is a

function of the BV and is generated by IC E

and M. The period of retrace is 4.61 msec,

which is shortened to about 3.5 msec by

IC E and is synchronized with phase 2 by

IC M. The output of IC M at pin 9, which is

active high, thus generated the interrupt at

IC D 6 during retrace. This signal is also

fed to IC G 4, DI7, where it can be moni-

tored by such memory reference instruc-

tions as MOV, A and M.

The pulse at IC M 9 is shorter than

BV, so D17 can be sampled during the final

microseconds of that pulse. In that case,

when the card is accessed, even though

IC M 9 is low, IC L 13 will still be active

low, and the CS pulse can still occur.

The following program briefly illus-

trates the method of operation. The

program simply fills the screen with a

given character and loops.

00MVI

00 MVt 076 Set accum with desired character
01 DATA 067 ASCII 7
02 STA 062 Store accum
03 L 100
04 H 003
05 LX! 001 Set reg pair B with tine increment
06 C 200 thisisoneinbit7
07 B 000
10LX) 041 Set reg pair H with starting address of display
11 L 000

12 H 360
13 MOVA,M 176 Move data byte form interface card to accum
14 AN! 346 Clear off everything but bit 7-retrace status
15 DATA 200

16 JZ 312 !f zero not in retrace, so loop till retrace
17 L 013

20 H 001

21 LDA 072 As in retrace, load accum with data

22 L 100

23 H 003
24 MOVM,A 167 Move accum to VRAM

25 !NX 043 tncrement column/line counter in reg pair H

26 MOV A,L 175 Move reg L to accum-contains cotumn count

27 AN) 346 Clear off bit 7, which is part of tine count

30 DATA 177
31 CP) 376 Compare column count with 80D-last plus one of column
32 DATA 120
33 JNZ 302 !f not zero, then more on tine to go
34 L 013

!f not zero, then more on tine to go

35 H 001
36 MOV A,L 175 Line compteted, so cotumn count in L to accum
37 AN! 346 Clear off all but bit 7, which is part of tine count
40 DATA 200

Clear off all but bit 7, which is part of tine count

41 MOV L,A 157 Move cleared column count back to L
42 DAD 011 Increment line count by double add with reg pair B
43 MOVA,H 174 Move line part of address in H to accum
44 CP! 376 Compare with last line plus one
45 DATA 374 This is 360Q plus 140, which corresponds to line 24D
46 JNZ 302 !f not zero, then more lines to go
47 L 013

50 H 001
5 1 J M P 303 Screen filled so loop

52 L 000

53 H 001

This combination of Matrox 2480 with

the Altair 8800 compatible interface card

has resulted in an excellent but relatively

inexpensive CRT terminal. Although I used

a separate interface card (partially because

of impatience), other users may not have

to, since Matrox has been working on a

card compatible with Altair computers and

may now be producing it.

The benefit of a separate interface

card (apart from space considerations) is

the freedom in being able to choose the

aspects of the interface which are the most

important, as I have done with the inter-

rupts and bits 7 and 8. Requirements will

differ among people, and some may, for

example, decide to access VRAM during

horizontal retrace, which would about

treble the data transfer rate. Using vertical

retrace, the data rate is about 6000 charac-

ters per second; using horizontal retrace,

rates of 18000 characters per second and

greater could be achieved. As another

example, latches could be implemented to

use the full 9-bit data bus for reading and

writing. The interface card described here,

while more than adequate for my purposes,

is therefore only one of many possible ways

of building a viable CRT terminal with the

Matrox VRAM.

CN/September, 1977 Fifteen

CAREFUL BULL)N THE CHtNA S H O P
A Cheap Approach

to the Mechan ics of Robot ics
O U S R S

This is the first article in a three-part name" they reserve. Thus far, haif a

series on buiiding a robot. Part n will dozen names have been spoken for, e.g.

cover in detaii the mechanics of robot "S.A. Rossum," "D.I . Sossum," and

buiiding, and Part ill will discuss applica- some folks whose reai family name is

tions. Rossum have been listed.

Members of the United States Robotics

Society (USRS) are using the family name "Robert Rossum" is a writer of books,

"Rossum" as a kind of collective pseudo- articles, and non-theatricai motion pic-

nym for their publications. Members who tures, who has spent most of the past 20

prefer to be anonymous may publish years working in research and develop-

through USRS under whatever "Rossum- mental laboratories.

Parti

By Robert Rossum

Someone once said that the most

interesting thing computers ever do is to

Mow hot air on your shoes while they hum

and soak up money. An intelligent

machine, no matter how clever, lacks

charm if it just sits around like a bump on a

log. Perhaps part of the current enthu-

siasm for robotics is a reaction to this static

performance of our clever machines.

Roboticists almost universally report their

determination to construct mobile systems.

The ordinary roboticist is usually a

good thinker-upper, programmer, planner,

and innovator but seldom a first-rate

mechanical engineer and master machin-

ist. Although drawing conceptual plans for

experimental mechanical systems is a

necessary first step, actual construction

and modification of mechanical creatures is

prohibitively expensive in cash and time.

The mobile systems built by institutions

and private workers tend to be awkward,

fragile, unstable, and uninteresting as well

as expensive. The interesting machines

that receive national publicity tend to be

anthropomorphic monsters. One such

recently publicized system is over six feet

high and weighs several hundred pounds.

It performs some remarkable tricks under

the remote control of its master but looks

mighty unstable on its small base.

Watching it causes the uneasy feeling that

if it dropped a wheel off the edge of a walk-

way, it would topple over, crushing dog,

child, mailman, or Volkswagen. The

publicity arising from that incident might

not bring cheer to other roboticists.

Even the cute little wheeled systems

that experimenters set to snuffling around

their laboratories have no more athletic

prowness than is required to climb over a

doorsill or up on a rug without stalling or

upsetting. Conventional mechanical

systems are generally proving unsatisfac-

tory for devices that are intended to

simulate the performance of living things.

The flaw in the simulation is not

chiefly the lack of intelligence. David

Heiserman, author of BUILD YOUR OWN

WORKING ROBOT, has observed that his

robots acquire behavioral characteristics

of living creatures, responding to their

environment in a surprisingly complex

fashion. In his book, Heiserman said the

fact that impresses him most is the sim-

plicity of the circuitry involved. He said a

few basic sensory channels, simple

reflexes, and a trifle of logic allow his

machines to behave like simple animals. It

may be that the devices are intellectually

trivial, but since they can move, displaying

their characteristics overtly, and can alter

their performance in response to a

changing environment, they are interest-

ing. Heiserman's mechanical systems are

quite crude, but at least they do some-

thing.

If experimenters today can develop

cheap and dirty mechanical systems that

any clumsy amateur can build in his own

garage, the progress in robotics will be

significant in the next few years. The

purpose of this series is to briefly describe

a cheap, not inexpensive, but cheap

mechanism for many robotics applications.

No detailed designs are offered, but roboti-

cists will be able to use the basic principles

of the system without further elaboration

here in print.

In this electronic age, we think of

robotics mechanisms in terms of electroni-

cally-controlled servosystems, stepping

motors, and complicated, heavy gear

trains. Consider servos. Since no mechan-

ical system if perfectly accurate, we must

always provide a trial-and-error system

that will let a free-moving device accomplish

its tasks in spite of imperfection. For

example, if you set your pet robot on a

course for a fire hydrant a block away, you

can be sure that the critter will miss the

fireplug unless it knows one when it sees

one and can hunt around as necessary to

find the thing. Just aiming straight from

where you are to the hydrant won't work,

since irregularities in the pavement,

uneven wear in the robot's wheels and

gears, bad aim, or a dozen other problems

will almost inevitably prevent the machine

from going directly from one place to the

other. The robot must be able to correct its

course, to "zero in " on the target. Of

course, when the machine changes its

course, the correction is not likely to be

prefect. It may over-correct or encounter

more problems along the way. Ordinarily,

a servomechanism is employed to make up

for imperfections in the rest of a machine,

to make the back-and-forth corrections

necessary to guide or position a machine

properly. The servo is precise in that it

takes the machine to exactly the right

position. But it's not necessarily "accu-

rate," since it doesn't follow a detailed set

of instructions to get to a target.

The distinction between precision and

accuracy is important. If your robot is

accurate, you may give it instructions such

as: Move exactly north 315 feet and five

inches. Then make a 90* turn to the left

Twenty-Two CN/September, 1977

(not an 89 turn or a 91 turn but a 90

turn), and move exactly 19 feet and seven

inches. Stop there, or you'll smash your

little lens on the knobby thing that is

sticking out of the hydrant.

What are the chances that you really

know exactly what the instructions should

be and that your robot can carry them well

out enough to get within six inches of the

hydrant? Not very good, unless you have

an uncommonly well-made, expensive

machine (equipped with a magnificent

inertial guidance system, perhaps) working

in an environment without obstructions. If

there are cracks in the sidewalk, you're

in trouble.

If your robot is equipped with sensors

and servos, it can use instructions more

like this: Move along the sidewalk to the

north without falling off the edge or

bumping signposts until you detect

something that looks like a fireplug off to

the left, about 300 feet along the way. Then

move toward that hydrant until you're six

inches from it. Stop there.

Chances are good that the robot will

go precisely where you want it to go.

That's precision, not accuracy. The robot

may be constructed with only lousy compo-

nents, may not be able to run accurately

within Ave degrees, may be off by three

percent in its judgment of distance, but it

will do what you want it to do. Remember

that living things are built entirely of

lousy, individually unreliable, and irregu-

lar components. Even the brain is con-

structed of stuff that couldn't meet military

specifications for purchasing, regardless of

actual performance.

Remember, too, that when an animal

lifts its foot, it does not usually have to

swing that foot clear around a 360 arc to

return it to its starting position. Feet move

forward and back, up, and down. Tails

move to and fro. Muscles in living crea-

tures are paired. Your bicep pulls your

forearm up, and your tricep pulls it back

down. Mechanical servomechanisms

usually work with paried motors, pulling

things first one way, then the other,

"zeroing-in." The builder is usually

depressed by the realization that almost

everything in his critter must be duplicated

-all motors matched or at least reversible.

One common ploy is to make the motor pull

against a spring that returns a limb to

"normal" position after the motor moves

it.

Robot designers usually provide a

motor for an arm, a motor for a head, a

motor for wagging the tail, etc. or very

complex, heavy, power-consuming gear

systems to accomplish all these functions

with a single motor. But let's consider an

alternative - the ancient double windlass

mechanism. Its virtues for the roboticist

are many. (See any encyclopedia; look

under "captain.")

BASIC SYSTEM

Figure 1 (the motor)

This box with an " M " on it is a motor.

Figure 2 (motor with shaft)

A long shaft protrudes from the motor.

Figure 3 (pulleys added to shaft)

We may place a pair of pulleys on the

shaft.

Figure 4 (upper lever added)

Above the shaft at some arbitrary

distance is Lever A, pivoted at its center.

A
1 Lever A

Figure 5 (lower lever added)

Below the shaft is Lever B, also

pivoted at its midpoint. Our interest here

is in getting Lever B to do something in

particular when we move Lever A.

Lever A

A

Lever B

Figure 6 (Cords CI and C2 added)

We connect Levers A and B with

Cords CI and C2. The cords are wrapped

loosely around the pulleys on the shaft so

that when the motor turns the pulleys just

spin inside the loose cords without affect-

ing them and the levers.

Lever A

Lever B

Figure 7 (both levers canted to

same angle)

Lever A

Lever B

Suppose that you take hold of Lever A,

tilting it upward at the left end. That pulls

Cord CI tight around its pulley, but Cord

C2 remains loose around its pulley. Here

the mechanical magic begins. As Cord CI

grips the pulley, the force of the motor

begins to pull on the cord. Even if you lift

the end of the lever very delicately with

your fingertips, the cord, hence also the

end of Lever B, will be pulled by the full

force of the motor. You need only keep a

bit of tension on the top part of that cord to

apply the motor's full force to the task of

lifting up the end of Lever B.

If you pull the end of Lever A steadily

up to some particular position, the motor

will wind up the lower part of Cord CI until

Lever B is cocked at the same angle as

Lever A. Then the cord will begin to slip on

continued

CN/September, 197 7 Five

CAREFUL BULL !N THE C H ! N A S H O P
continued

the pulley, and the pulling force of the
motor wiH be relieved. You have applied a
small control force to the upper lever,
causing the motor's force to be applied to
the lower lever. In fact, a weight of some
significance might be hanging from that
left end of Lever B.

Figure 8 (10 lb. weight hanging from
Lever B)

This is far more weight than you
could lift with your fingertip. The motor
would do the lifting, multiplying the
control force greatly.

Lever A

Lever B

Notice that when the Cord CI begins
to slip, C2 is just on the point of growing
tight. When the action stops, the windings
of the two pulleys are slightly loose, just as
they were when the action began. The
system is all ready to perform again
promptly when another control force is
applied to a lever. If you pull up on the
right end of Lever A now, Lever B will be
returned to its original matching position -
sort of a bicep-tricep action.

You've done two things -- controlled
the position of Lever B by manipulating
Lever A and multiplied the tiny control
force with the force of the motor. These are
both very important to the roboticist who is
hoping to control the limbs of a mechanical
creature.

SOME MORE BASICS
You may choose to amplify your

motion as well as your control force.

Twenty-Two

Figure 9 (Cords on Lever B now attached
appreciably closer to the pivot than on

Lever A)

Lever A

Lever B

Lever A

In fact, your control motor might
sensibly by a reversible shaded-pole
motor. Motor experts say that a shaded-
pole motor can be held in a stalled condi-
tion indefinitely without damage, and
that's an advantage. (As later article will
discuss a mixed bag of alternative to con-
trol motors.) With signals from your
robot's brain, presumably your personal
computer, you can move Lever B either
way automatically with appreciable force.

Figure 11 (main motor shaft with more
sets of pulleys)

The shaft from the main motor may
be equipped with numerous pairs of
pulleys so that power may be applied at
any point along the shaft to any chosen
lever down below.

If you now raise the left end of Lever
A the same distance you did before, the
force of the motor will be applied to Lever
B in the same way. The same length of
cord will be drawn up by the pulley, but the
left end of Lever B will be moved a greater
distance. You have multiplied both force
and motion.

The motor here may be as large as you
like, depending upon the application.
The control force you apply to Lever A
may, in fact, be supplied by another motor,
since your robot will probably employ an
electrical system, and turning power off
and on in electrical motors will be a
straightforward matter. The control motor
may be small, both in physical size and
power. (The main motor may even be
gasoline or steam powered, if you like,
depending on your application and willing-
ness for your robot to breathe real smoke
and fire with a variety of associated noises.

Figure 10 (control motor on Lever A)

Control Motor

Lever B

Figure 12 (flexible shaft with pulleys
along its snaking path)

The shaft may be flexible so that
power can be transmitted from the main
motor to remote regions of the robot in
which it resides.

CN/September, 1977

M

An important consideration at this

point is shared power. Obviously, there's a

limit to the number of pulleys you can put

on the shaft of a given motor. There's a

practical physical constraint of some kind

to balance your every wish. If you tighten

the cords at every point along the shaft,

drawing power from the motor at each pair

of pulleys, your chances of overloading the

motor are very great. But there's the

beauty of the system (well, one beauty

among many) - it works like an animal.

Like any animal, you rarely use all of your

muscles at once. When you run, you may

be using your leg muscles in an extreme

fashion, but you are not simultaneously

using your neck and arm muscles to their

fullest extent. Chances are that you are

not also trying to bite through a heavy

CN/September, 1977

bone, too, drawing a great deal of energy

in your jaw nulscles.

That's a very significant factor in the

design of animals. You have a certain

amount of chemical energy stored locally in

your muscles. When you move the

muscles, you consume some of that avail-

able energy. If you exert the muscles

greatly, you use up all that's available

locally, and must get more sugar from the

liver. With great exertion you can develop

a severe shortage of energy locally. Luck-

ily, you seldom exert all muscles at the

same time, so you don't develop a general

deficit of energy. (However, people do

sometimes die of overexertion. That's one

of the problems for people stuck in bliz-

zards. They tend to use up all of their

reserves struggling through the snow, and

then lie down to rest. When they quit

moving, they quit pumping new chemicals

to their depleted muscles fast enough. The

cold and lack of energy may be fatal.) The

analogy is not perfect, but it's pretty good.

This double windlass system allows the

energy of the main motor to be shared by

many functions in the body of the robot.

The average load on the motor can be quite

low, while large amounts of energy are

rapidly available wherever needed. When

separate motors are used at all places

where energy is needed, those motors

must be big enough to supply all the

energy that will ever be needed from them.

That means a lot of extra weight is being

dragged around all the time just in case a

burst of energy is needed. The double

windlass system solves much of this

problem with a comparatively simple

simulation of the system Nature has been

using effectively for a long time.

I 'm not complaining about standard

mechanical systems. There's much to be

said for the clever designs that competent

engineers have developed for robotic and

non-robotic mobile systems using modem

technology. However, cheapness is not a

feature of standard mechanical systems,

and the average home craftsman simply

can't cope with them.

The double windlass system can be

assembled by the home experimenter with

Tinkertoys or an Erector Set. The interest-

ed roboticist can work with this system

himself even before the next article

in this series on more mechanics of robot-

building is published next month.

The pulleys can be empty thread

spools in the experimental system. When

you get around to building a rig that's

meant to last, you'll want to use metal,

because there's a lot of wear. Don't the

cords stretch? Sure, and they'll have to be

tightened once in a while. So what? At

least you can figure out what's wrong and

fix it yourself. (And there will be many

maddening problems inherent in this

system as in any other.) By machinists

standards, the whole mechanism can be

quite sloppy and still work. Precision can

be achieved in a sloppy system without

accuracy.

In the discussions leading up to this

article someone asked: "Isn't there a real

safety factor in the fact that the cords will

slip on the pulleys if they are overloaded?"

"Oh, no. The cords will break before

they slip. This is the kind of mechanism

people use to pull two or three miles of oil

drill stem up out of wells. The windlass is a

powerful tool. Why do you ask?"

"Well, I guess I don't want the robot

to be too strong."

continued
Seven

Figure 13 (various sizes of pulleys on

the shaft)

All the pulleys may be of different

sizes on this same shaft so that Lever B1

may be moved with a different amount of

power from that applied to B2 and so on.

Maybe you don't want the robot to wag its

tail with enough force and speed to smash

a chair leg. You can control the speed and

power of the way by choosing levers of

appropriate length and pulleys of appro-

priate diameter.

V V

BU!LD Y O U R O W N [NTERFACE
Tips f r om a professiona!

By Mike Smith

Smith is a professional design engineer

and avid computer hobbyist. His articie

deals with Aitair bus signals and three

different types of I/O: Fiag Testing,

Program Interrupt, and Direct Memory

Access. This story first appeared in the

June 1977 issue of KILOBAUD. Copyright

1977 KILOBAUD Pubiications, Inc.,

Peterborough, NH, USA. All rights

reserved. Reprinted by permission.

One of the most interesting and

rewarding areas of the persona! computer

hobby is that of designing and building

custom interfaces. Aside from the sheer

pleasure and satisfaction that comes with

seeing your new design work, there is the

possibility of interfacing something that

has never been interfaced as well as the

benefit of substantial money savings as

compared to the purchase of a commercial

kit or finished product.

This article deals specifically with

interfacing to the Altair 8800 series of

CAREFUL BULL

!N THE C H ! N A S H O P
cont inued

"Too strong for what?"

"For people. I don't want it to hurt

anybody by accident, and I though maybe

the cords would s!ip in case the machine

happened to be gripping somebody too

hard."

"Ah. Well, you'll have to take care of

that in the machine's logic. I suppose you

could build in a sensing circuit that makes

it turn off when it hears a scream."

"That isn't the comfort I was looking

for."

"Sorry. A machine is a machine.

Build it the way you want to build it.

Maybe it can leam to be careful."

I haven't discussed the logic, brain, or

reflexes of a robot in this article, though

some of those matters will be touched upon

later in the series. Instead, I've offered a

cheap and dirty approach to making robots

do something interesting. If you have been

stewing in frustration over your inability -

financial or mental -- to build a working

system to go with the brains on your shelf,

get busy with the spools and Erector Set

motor-:.

computers and applies equally to all three

models (8800, 8800A, and 8800B). The

6rst step toward successfully interfacing

any computer is a thorough understanding

of the bus. The Altair Bus is a 100 line

printed circuit board bus, in which all like

numbered connector pins connect to one

another via etched copper lines. This

structure allows any interface, CPU or

memory printed circuit board to be inserted

into any vacant connector slot. The 8800A

and 8800B come equipped with an 18-slot

bus (mother board), while the 8800 is

provided with a 4-slot bus with space

provided for 3 additional 4-slot mother

boards.

Each of the 100 lines on the Altair Bus

has a predefined function which must be

fully understood in order to make good use

of the bus.

Table 1 contains a complete break-

down of all the Altair Bus signals, given in

functional logic notation. This means that

in each signal mnemonic there are two

parts. The first is the signal abbreviation

and the second is the active level represen-

tation. The two parts are separated by a

hyphen for clarity. The active level repre-

sentation is in the form of an upper case H

for active high and an upper case L for

active low. Functional representation does

not apply to power and ground lines. To

correlate the functional logic shown here to

the "positive logic" symbology shown in

the Altair documentation, drop the active

level representation and draw a Boolean

NOT sign over the tops of these signals

shown here as L. The functional notation is

a far better approach because it reserves

the use of the Boolean NOT symbol for use

when NOT is intended. Positive logic nota-

tion on the other hand, uses the NOT

symbol every time an active low is indi-

cated, so that every time the logical NOT

function is desired, it will be confused with

active low.

Let's take a look at the major groups of

signals on the bus. The address lines are

outputs from the CPU board and are inputs

on all memory and I/O boards. The I/O

boards use only the lower 8 bits (A0-H

through A7-H) because during I /O trans-

fers, the upper 8 bits are identical to the

lower 8 bits. In the event that direct

memory access (DMA) is used, the DMA

controller must also generate an address

on the address lines. In the 8800 and

8800A, these lines (through current limit-

ing resistors) provide the drive for the

Address indicators on the front panel. This

seriously limits the high going drive of the

8T97 drivers on the CPU board and there-

fore it is suggested that each board receive

the address lines using only one low power

TTL or low power Schottky TTL device. In

the event that a DMA controller is being

designed, it is recommended that address

drivers equivalent to the 8T97s on the CPU

board be used.

The data-out lines are outputs from

the CPU board and are inputs on all

memory and I/O boards. In the event that

DMA is used, the DMA controller must

also drive the data-out lines when the

direction of the data transfer is to the

memory from the DMA controller. Assum-

ing no more than the 18 cards that will St

in the cabinet are connected to the bus, up

to 2 milliamps of low loading may occur on

each board in the bus. This equates to one

standard or Schottky load, 5 low power

Schottky loads, or 10 low power TTL loads.

A DMA controller should drive these lines

with 8T97 Tri-state buffers or equivalent.

The data-in lines are inputs to the CPU

board and are driven from the memories

and I/O boards. In the event that DMA is

used, the DMA controller is an additional

input for the data-in lines. Also, the front

panel is an input for these lines. Since the

front panel and CPU both use 74LS04

receivers for the data-in lines and the lines

are "pulled-up" using lk Ohm resistors at

the CPU board, almost any Tri-state or

open collector TTL driver may be used to

drive the data-in lines from the memory

and I/O boards. However, to insure

optimum noise immunity and capacitive

drive over the length of bus, it is recom-

mended that the 8T97 type buffers be used

to drive the data-in lines.

The status lines are sent out to the bus

from the CPU board (and from the DMA

controller is installed). The status lines

consist of 8 lines which are selectively used

by the memories and I/O boards to obtain

information about the nature of the cycle.

Those lines are also displayed on the front

panel. The status lines are electrically of

the same nature as the address lines,

which means that they should be loaded by

only one low power TTL or one low power

Twenty-Two CN/September, 1977

Schottky TTL load pet board. A DMA

controller must be capable of generating

these signals during a DMA transfer.

These lines are SINTA-H, SWO-L,

SSTACK-H, SHLTA-H, SOUT H, SM1-H,

SINP-H, and SMEMR-H.

The processor lines are a buffered

group of inputs and outputs which are

derivatives of the Intel 8080 processor

signals. The 6 processor output lines are

PSYNC-H, PDBIN-H, PWAIT-H, PWR-L,

PHLDA-H, and PINTE-H. The DMA

controller has control of these lines during

a DMA transfer. The 5 input lines are

PRDY-H, XRDY-H, PHOLD-L, PINT-L,

and PRESET-L. Since some of the output

signals in this group are used to drive front

panel indicators, the input loading should

not exceed one low power TTL or one low

power Schottky TTL load per board. The

input signals are all "pulled-up" using lk

Ohm resistors so that they may be driven

by any Tri-state or open collector TTL gate

or buffer. Although many kits (and the

Altair manual itself) advocate the use of

the PRDY-H line for inducing "wait"

states, a much better and electrically

correct) way of doing this is to use the

XRDY-H line. The front panel drives

PRDY-H with a constantly enabled 8T97

which has substantial haigh going drive

capability. To pull this line down while the

front panel is pulling it high causes large

instantaneous surge currents in the

devices, causing unnecessary noise spikes

as well as abuse to the devices themselves.

The disable group of lines is used to

disable the various Tri-state drivers on the

CPU board when a DMA cycle occurs. The

DMA controller then becomes responsible

for driving the disabled lines. There are 4

disable signals which are used with DMA.

They are STADSB-L, C/CDSB-L, ADDDSB

-L, and DODSB-L. A fifth disable signal is

SSWDSB-L, which has nothing to do with

DMA, but instead is used to gate in the

sense switches when an IN 377 (octal)

instruction occurs.

The heart of the Altair 8800 system is

the CPU board. A block diagram of this

board is shown in Fig. 1. This block

diagram is provided to give an overview of

the CPU connections to the bus. All refer-

ences of in and out in the Altair system are

with respect to the CPU board. The

bidirectional data lines of the 8080 micro-

processor are split into data-in and data-

out lines for use on the Altair bus. The

contents of the bidirectional data lines are

latched into the 8212 latch at SYNC time by

the 01 signal. The outputs of the 8212

latch are buffered for system use by 8T97

Tri-state buffers. The processor output

signals are also buffered using 8T97s and

F/y. 7. CPU g/oc/r D/agram.

presented to the bus. The processor input

signals are also buffered using 8T97s and

presented to the bus. The processor input

signals are passed through receivers and

then presented to the 8080 chip. The ready

signals (PRDY-H and XRDY-H) are

ANDed, synchronized with 02, sent to the

8080. PHOLD-L is also synchronized with

02 before being sent to the 8080. The CPU

block diagram should also be of value in

the event that troubleshooting the CPU

becomes necessary.

Fig. 2 is a block diagram of a typical

4K byte static memory as implemented for

the Altair bus. In the static memory board,

the control is relatively simple, with the

major effort in the area of address decod-

ing and control signal generation. Fig. 3

shows how this might be accomplished.

The methods chosen for simplicity and are

based on readily available, inexpensive

components. SI through S4 are address

selection switches, which determine the

position in the address range the board will

occupy. These switches are normally of the

DIP-SWITCH type, but may be replaced by

jumpers for economy. BOARDSEL-L will

be active (low) is all 4 switches match the

state of the respective address lines asso-

ciated with the switches. BOARDSEL-L

has several functions, which include

enabling the CHIPSEL decoder which is a

7442 decoder, providing an enabling input

to both the READ-L and WRITE-L gates

and finally in allowing the PROTECT flip-

flop (not shown) to be changed by either

the PROT-L or UNPROT-L signals. The

CHIPSEL decoder is connected so as to

provide one of four chip selects according

to the state of A10-H and All-H. Either

READ-L or WRITE-L is produced during a

memory cycle based on the state of

SMEMR-H, PDBIN-H, and MWRT-H lines

at the time BOARDSEL-L is low. WRITE-L

is used as a memory write pulse and is fed

to pin 3 of all the 2102 chips on the board

during a memory write cycle. Only those

2102s selected by an active (low) CHIPSEL

signal will be written into. READ-L is used

to enable the DATA BUS DRIVER which is

composed of 8T97 buffers feeding the data-

in lines. There are many ways to accom-

plish the address decoding other than as

shown. Among these are the use of

address comparator chips to produce

BOARDSEL-L.

Keep in mind that the purpose of

discussing the memory, CPU, and I/O

interfaces is to give an insight into the

Altair bus considerations for the boards,

not to provide complete design details.

With the information provided, it is hoped

that you will be able to pick up the ball and

make your own designs work. Also, many

genera! designs shown in other articles

may be adapted for your Altair, using the

techniques in this article.

By far, the largest area open to

hardware experimentation in the personal

computer system is that of I/O interfacing.

If you are started to design an I/O interface

from scratch, the first order of business is

the conceptual design. This first involved

deciding what function the interface board

wil! perform. Once the function has been

deSned, it must then be decided how the

interface will look to your software. This is

cont inued

CN/September, 1977 Fifteen

7

4

5

6
7

8
9

10
11

12-17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Mnemonic Description
+ 8 Vo!ts Unregulated power supply for

use by +5 Volt on-board reg-

ulators.

+16 Volts Unregulated power supply tor

use by ort-board regulators

{typically to obtain +12 Volts).

XRDY-H A normally high iine, which if

brought to the low state will

cause the CPU to enter the

WAIT state.

VIO-W Vectored Interrupt priority 0

VI1-H Vectored Interrupt priority 1

VI2-H Vectored Interrupt priority 2

Vt3-H Vectored Interrupt priority 3

V)4-H Vectored Interrupt priority 4

VI5-H Vectored Interrupt priority 5

V)6-H Vectored interrupt priority 6

VI7-H Vectored Interrupt priority 7

Not Used

STADSB-L Causes the 8 status tine buffers

on the CPU board to be In-

stated (enter the high imped-

ance state).

C/CDSB-L Causes the 6 command/control

line buffers on the CPU board

to be Tri-stated tenter the

high impedance state).

UNPROT-H A signal which is ANDed with

"board select" on a memory

board to cause the PROTECT

flip-flop to be cleared.

SS-H Indicates a single-step is

occurring in the CPU.

ADDDSB-L Causes the 16 address line

buffers on the CPU board to

be Tri-stated (enter the high

impedance state}.

DODSB-L Causes the 8 data-out lines on

the CPU board to be Tri-stated

(enter the high impedance state).

02-H Buffered TTL compatible version

of CPU phase 2 clock.

01 -H Buffered TTL compatible version

of CPU phase 1 clock.

PHLDA-H "Hold Acknowledge" which is the

CPU board response to the HOLD-H

input signal.

PWAIT-H CPU signal indicating a WAtT

state is occurring.

P!NTE-H CPU signal indicating that tn-

terrupts are Enabled.

A5-H Address Bit 5

A4-H Address Bit 4

A3-H Address Bit 3

A15-H AddressBitlS

A12-H Address Bit 12

A9-H Address Bit 9

D01-H Data Out (from CPU) Bit 1

DOO-H Data Out (from CPU) Bit 0

A10-H Address Bit 10

D04-H Data Out (from CPU) Bit 4

39 D05-H Data Out (from CPU) Bit 5

40 D06-H Data Out (from CPU) Bit 6

41 D12-H Data in (to CPU) Bit 2

42 D13-H Data In (to CPU) Bit 3

43 D17-H Data In (to CPU) Bit 7

44 SM1-H CPU status signal indicating

processor is in machine cycle

1 which is Instruction Fetch.

45 SOUT-H CPU status signal indicating

the current cycle is an Out-

put cycle.

46 StNP-H CPU status signal indicating

the current cycle is an In-

put cycle.

47 SMEMR-H CPU status signal indicating

the current cycle is a Memory

Read cycle.

48 SHLTA-H CPU status signal indicating

the CPU is Halted.

49 CLOC-L A buffered 2 MHz clock for

general use.

50 GND System ground

51 +8 Volts (Same as pin 1)

52 -16 Volts Unregulated negative power

supply for use by on board

regulators (typically to

obtain -5 Volts or -12

Volts).

53 SSWOSB-L "Sense Switch Disabfe" which

is used during an IN 377

instruction to disable the dat3

input buffers on the CPU board

so that the sense switches can

be "read" by the CPU.

54 EXTCLR-L I/O clear signal generated

by front panel.

55-67 Not Used

68 MWRT-H CPU signal indicating that the

data on the data-out bus is to

be written into the memory se-

lected by the address !ines.

69 PS-L "Protect Status" qf the select-

ed memory.

70 PROT-H A signal which is ANDcd with

"board select" on a memory

board to cause the PROTECT

flip-flop to be set.

71 RUN-H Front panel signal indicating

that the CPU has been *'to)d"

toRUN.

72 PRDY-H A normally high tine which if

brought to the tow statte wii!

cause the CPU to enter the WAIT

state. Note:This line :s

driven by a continuously enabled

Tri-state driver on the front

panel board and contrary to what

others may be doing, this line

should not be used for any other

purpose. The proper !ine to use

for entering wait states by

the area in which most of the design trade-

offs take place. This is to way, for

example, if the interface is to be extremely

easy to control from the program, then the

hardware complexity will likely increase.

Conversely, min imal hardware complexity

usually results in more difficult program-

ming. This is the real beauty of designing

your own interfaces . . . you make the

Table 1. The Altair Bus

design trade-offs to suit your own needs

and tastes.

Many times it is helpful to jot down

notes on the way your prospective interface

will appear to the software and then make a

trial subroutine using the scheme you have

decided upon. I f the results of your test

subroutine are not pleasing to you, then

rehash the conceptual design and try

again. In this way, you will have a good

feel for the way your interface will function

before it is built . It will also become

apparent as to which way the trade-offs

must be moved before trying again.

Three major operating modes for I / O

interfaces are Bug testing, program Inter-

rupt, and D M A (direct memory access).

The most frequently used and easiest to

Twenty-Two CN/September, 1977

73 PtNT-L

74

75

76

77

78

79

80
81
82
83

84

85

86
87

88
89

90

91

92

93

94

95

96

97

98

99
100

PHOLD-L

PRESET-L

PSYNC-H

PWR-L

PDBtN-L

AO-H

A1-H

A2-H

A6-H

A7-H

A8-H

A13-H

A14-H

A11-H

D02-H

D03-H

D07-H

D)4-H

Di5-H

D)6-H

D!1-H

D)0-H

StNTA-H

SWO-L

SSTACK-H

POC-L

GND

"stow" memories and I /O devices

is XRDY-H (Pin 3).

"tnterrupt Request". tnter-

rupts have been enab!ed, a tow

tevet on this tine causes the

CPU to enter the interrupt ec-

knowtedge condition at the con-

clusion of the current instruc-

tion.

An input signal to the CPU

which causes a HOLD state to

occur. PHOL.D is the requesting

signal f o r a D M A transfer.

Asystem reset signs! used

primarily by the CPU board.

(I/O boards normally use the

EXTCLR-L signal for resetting).

A buffered CPU signal which in-

dicates the beginning of a new

machine cycle. This signs! is

used on the CPU bawd to enable

the loading of the system st3tus

latch.

"Processor Write" which indicates

that the data on the data-out

bus is to be written either to a

memory Or an t/O device.

"Processor Data Bus tn" is used

to indicate to the seSected

memory or I/O device that the

CPU expects data on the data-in

bus.

Address Bi tO

Address Bit 1

Address B i t 2

Address B i t 6

Address B i t7

Address B i t 8

Address Bit 13

Address Bit 14

Address B i t l l

Data Out (from CPU) Bit 2

Data Out (from CPU) Bit 3

Data Out (from CPU) Bit 7

Data tn (to CPU) Bit 4

Data tn (to CPU) Bit 5

Data tn (to CPU) Bit 6

D a t a t n (t o C P U) B i t 1

Data tn (to CPU) Bit 0

tnterrupt Acknowtedge signal

f romCPU.

CPU status signat indicating

that the current cycte invotves

writing to a memory or t/O

device.

CPU status signal indicating

that the address bus contains

the stack address and that a

stack operation will occur on

the current cycle.

Power On Clear reset signal

System ground

Table 1 (continued)

implement) is the Hag testing method.

During the conceptuai design, a particular

bit is designated to indicate a particular

meaning such as device busy, device

ready, device error, etc. The meanings

such bits may assume is limited only by

your imagination. Normally, these bits are

read by the program from an I /O port

reffered to as the status register. Also, the

f/<y. 2. 4/f Sfaf/c Memory B/ocAr D/ayram.

A I S - H >

A I 2 - H)

SMEMR-H)
POBIM-H)

MWRT-H)

80ARDSEL-L

74LS04
O-H)

Ay. 3. Oecot&ny and Confro/ S/<yna/ Generaf/on.

status register is usually the lowest port

number associated with a device. An

example might be a paper tape reader in

which the status register is port 6. The

data register would then be port 7. Bit 7

would be a good selection to indicate data

ready in the status register. The software

would then consist of a ready loop shown in

Example 1. This type of I/O software is

referred to as flag testing. Most devices

are readily controlled in this manner. The

primary shortcoming of the flag testing

method is that the computer spends most

of its time in the read loop, waiting for the

next data to become ready. In most

personal computing situations this waiting

cont inued

CN/September, 1977 Fifteen

BU!LD Y O U R O W N !NTERFACE
H p s f r o m a profess iona !

continued

7 4 L S 0 4 IMPENAB-L

SINTA-W

tNTEHRUPT

CONOmON-t-

! — t „ *o-!
7 4 L S 0 4 L

7-H > ^ ^

iDATA!

OOOMCTAL !

OOHOCTAt .)

HMt

SBS

KMT

EPE

Cu l l [OUT

wi.s:
iOUT) BIT

DATA

S T A T U S / S E T

G E T / P U T

A'g. 4. /nterropt Log/c. Ag. 5. Port //O Oecod/ng.

LOOP; IN 6 GET STATUS
RAL POSITION READY BIT IN CARRY
JNC LOOP TRY AGAIN IF NOT READY
IN 7 GET THE DATA
MOVM.A STORE THE DATA
. . . E T C

fxamp/e7.

is not a problem. If more than one process

must occur simultaneously, it is possible to

use program interrupt or DMA to free the

processor for other processing while the

I/O devices function more independently.

In the case of program interrupt, the ready

bit would be used to pull down the inter-

rupt request line (PINT-L). The processor

would them respond (if interrupts were

enabled) with SINTA-H. The I/O interface

would then use SINTA-H to gate an inter-

rupt instrution onto the bus (see Fig. 4).

The interrupt instruction is usually a

restart (RST) instruction which would save

the program counter on the stack and then

vector to the I/O subroutine. The I/O

subroutine would then process the data

and execute a RET (return) instruction.

The DMA type of operation will be dis-

cussed separately.

Another major decision to be made

during conceptual design is whether

standard I/O (port I/O) or memory mapped

I/O addressing will be used. Each of these

methods have advantages and disadvan-

tages which must be weighed in your own

mind. Port I/O has the advantage of

having less address lines to decode (8) as

well as leaving all 65K of the address space

available for memory. It has the advantage

of being limited to only two types of

instructions in transferring data to and

from the I/O device (IN, OUT). Memory-

mapped I /O is a method in which the I/O

device is treated as if it were a memory

location ot group of memory locations.

Memory mapped I/O has the advantage of

being able to use any of the transfer

instructions that are used with real

memory, including arithmetic and logical

as well as move instructions. The disad-

vantages are the need to decode more

address bits (16) and the fact that part of

memory address spectrum is consumed for

I/O use. An example of port I/O address

decoding is shown in Fig. 5. An example of

memory mapped I/O is given in Fig. 6. A

bit chart with addresses is provided in each

of these figures. Each is set up to perform

an identical function so that you may

compare the complexity of one to another.

The next step in the design of the I/O

interface is the design implementation.

This is the part which is referred to by

many people simply as the design stage.

This is the actual drawing of the logic

diagram in such a way to satisfy the

requirements of the bus (referred to as bus

overhead). To aid you in this area a typical

I/O interface block diagram is provided in

Fig. 7. Also virtually every I/O interface

requires the sending of data to the CPU

board. A means of performing this function

is shown in Fig. 8. Fig.8 depicts a method

in which data and status are multiplexed

into the data buffers. Other methods of

accomplishing this include separate 8T97s

for the data and the status; thus, eliminat-

ing the 74157 multiplexers.

When designing an interface which

makes use of large scale integration (LSI)

components, the control register, status

register, and device logic are all built in

to a special purpose chip. Examples of this

type of chip include the UART, PIA, ACIA,

Programmable Peripheral Interface, etc.

These chips are very useful because they

were designed for microprocessor (or

minicomputer) interfacing ease and pack-

age count efficiency. When using these

devices, the specifications and application

notes should be studied carefully, espe-

cially in the areas of operating modes,

software considerations and performance.

In the specification sheets, beware of using

the typical values. Instead, use the

minimum and maximum values as appro-

Twenty-Two CN/September, 1977

AI5-H) -

A I 3 - M >

A H - H >

A l l - H >

A I O - H >

A 9 - H >

A S - H >

Ar-H>
A 6 - H >

A S - H >

A 4 - H >

A3-W>-

A 2 - H >

A t - K >

SMEMB-H>

P 0 I 9 I N - H >

A O - H) -

S E T - L

(CONTROL)

I77T6M3CTAL)

P F F E t H E X) iB%tt) MEA3I

s e s

tWHT!

EPS P t

IWRTt iWWT)

I 7 7 7 7 ! 0 C T A L)

F F F F t H E X !
DATA

S T A T U S / S E T

S E T / P U T

f/y. 6. Memory - Mapped ̂ /O Cfced/ng.

priate. This will help to assure glitch-free
operation of your finished interface, Since
most of these LSI components are MOS
(Metal oxide semiconductor) chips, careM
attention must be paid to output signal
bading and timing specifications. Almost
without exception, these devices can drive
on!y one TTL load and should therefore be
buffered. The 8080 MOS/LSI microproces-
sor chip itseif is a good example of this
fact. Notice that all output lines of the 8080
are buffered on the CPU board. Also most
of these devices must be fed relatively wide
timing pulses. In addition, some MOS/LSI
devices are dynamic in nature and thus
require a constant clock of some minimum
frequency. These requirements are all
relatively easy to meet, but overlooking
them will, in most cases, cause disappoint-
ment in the performance of your interface.
While these devices are more difficult to
use than standard TTL integrated circuits
on a chip for chip basis, the large number
of chips and the printed circuit space they
replace make them very worthwhile addi-
tions to an interface design. Also, these
devices use far less power than the group
of TTL chips they replace. As in the
handling of all MOS components, care
must be taken in the handling of these
devices as they are subject to damage from
static charges.

Since the control register and status
register are usually incorporated internally
in the LSI components, the conceptual

pwa ,
" A D D R E S S I D .

LIMES

<
9ATA
BUS

ORiVER

DATA IN [ENABLE)

0A7A
9US

RECEIVER

SIMP

ADDRESS
K C O D E
LOGIC

DATA

.[MULTIPLEXER

P S C . e X T C L R

INTERRUPT

LOGIC

MM
FROM

DEVICE

MM
TO

DEVICE

DEVICE

LOGIC

STATUS

LOGIC

CONTROL

REGISTER

INTERRUPT ENA9L5

[OPTIONAL)

POWER

SUPPLY

REGULATOR - SNO

* NUMBER O F L INES DEPENDENT

UPON DECODING SCHEME

Ay. 7. fyp/ca/ //C 3/oe* O/ayram.

design must conform to the available
control and status bits provided. In some
cases, it is possible to augment the control/
status of the LSI chip being used by provid-
ing additional external flag bits or status
bits. An example of this would be an
interrupt enabled control bit external to a
1402 UART (which has no such function
internally). It is also possible in some
cases to combine outputs (by using exter-
nal gating) in such a way as to make the
signals more useful to your unique applica-
tion. In other cases, it is possible to ignore
certain outputs if they are not suited to
your needs. On the unused input signals,
it is usually necessary to tie the pin high or
low or to another driven input. Carefully
review the specifications of the device for
clues as to the handling of unused inputs.
It is easy to be intimidated by the maze of
data and buzz words contained in many
manufacturers' data sheets. Keep in mind
that reading these sheets does not require
a degree in engineering and that the
people preparing the data sheet want you
to understand it. Also, remember that data

sheets do sometimes contain errors, so if
in doubt, check with the manufacturer or
his representative (usually given on the
back of the data sheet) or check on the data
from a different vendor if the part is second
sourced.

As mentioned earlier, it is possible to
free the processor of much of the work
involved in I/O programming by using
direct memory access (DMA). Fig. 9
shows the block diagram of a DMA control-
ler. The basic operation of the controller
involves setting the DMA address register
to the desired number of bytes to be trans-
ferred and then allowing the DMA control-
ler (independent of the CPU) to transfer an
entire block of data to (or from) the device
from (or to) the main memory. When each
byte is transferred, the byte counter is
decremented while the address counter is
incremented. When the byte counter
reaches a count of zero, the DMA operation
is complete. The DMA transfer consists of
a number of a DMA bus cycles which is
equal to the number of bytes specified

continued

CN/September, 197 7 Thirteen

BU!LD Y O U R O W N INTERFACE
Tips f r o m a pro fess iona !

cont inued

when setting the byte counter. Each DMA

cycle is initiated by the device requesting

service, which results in HOLD-L being

driven low (active). This is then recognized

by the CPU board which sychronizes

HOLD-L and eventually suspends program

activity and responds with HLDA-L. When

the DMA controller receives HLDA-L, the

disable signals STADSB-L C/C DSB-L,

ADDDSB-L, and DODSB-L are all brought

low which removes virtually all CPU

influence from the bus. The DMA con-

troller then drives the disabled signals in

such a way as to make the other boards in

the system (especially the memory boards)

think that the CPU is talking to them. The

direction of th^ data transfer, the memory

address, and all other control functions are

determined by the way these lines are

driven.

Among the advantages to be gained

by using the DMA facility are transfer

rates which greatly exceed the maximum

programmed data rate (I/O under CPU

control). The number of integrated circuits

required to implement DMA is rather

large, which tends to discourage its use in

all but the most demanding situations. In

most cases, due to the large number of

components involved, the divice logic and

the DMA logic are contained on separate

boards and are interconnected externally

from the bus to one another by means of

jumper straps.

While not one of the more glamorous

apsects of computer interfacing, the need

for proper power distribution remains ever

present. The majority of the logic used in

the Altair system requires the use of 5 volts

which must be regulated to within 5% of

nominal. The bus supplies unregulated

positive voltage on pins 1 and 51 at

approximately 8 volts. Each board then

regulates this down to 5 bolts for use on

that board. The easiest way to accomplish

this regulation is through the use of one

of the 3-pin regulators which are available

in several ratings and shapes. The two

most common types are the 7805 and

LM309 regulators. Most commonly, the

7805 comes in the T0-220 package while

the LM309 Uses the TO-3 package. Either

type requires the use of an adequate heat

sink as well as input and output filtering.

Both types are nominally rated at 1.0

Amps. For current requirements in excess

of 1.0 Amps, multiple regulators may be

used, or heavier duty types may be used,

such as the LM323 which is rated at 3.0

Fourteen

74157

DEVICE DATA 7 - H 4 9
4Y

DEVICE STATUS7-

DEVICE DATA 6 - H : B 3Y

DEVICE STATUS6 H 5A

DEVICE DATA 5 - H 2B
2Y

DEVICE STATUSS- 2A
2Y

DEVICE DATA 4-M i e

DEVICE STATUS4 -H "s E "

6ET0ATA-L-

INPENAB-L-

DATA IN-L -

T
3EVICE DATA ! - H -

3EVICESTATUS3-H -

DEVICE DATA 2-H -

3EVICE STATUS2-H -

DEVICE DATA I - H -

DEVICE STATUSI-H -

DEVICE D A T A O - H -

DEVICE STATUS O-H-

F/& 3. Dafa-/n Dr/yer/Mu/f/p/exer.

f/y. A CAM 3/oc* D/agvam.

Amps. Also, it is important to bypass the

regulated 5 volt line to ground at regular

intervals using .01 uF ceramic capacitors.

A good rule of thumb if one .01 uF capaci-

tor for each six integrated circuits. Also,

follow the manufacturer's guidelines for

any special layout requirements. This is

especially important in the area of analog

interfacing. Don't overlook the importance

of good grounding tec^nifji- s when

constructing your interface as deficiencies

in this area sometimes show up as ghosts

(erratic operation) and rarely can be found

by logical means.

Interfacing is a key ingredient in

making your computer perform useful

functions as well as an interesting part of

personal computing. Becoming skilled in

the art and science of interfacing will pay

many dividends in the enjoyment of this

most interesting hobby.

CN/September, 197 7

gtmti]

Students Devetop
!C Logic Test Ctip for Attair 6 8 0 b

By James Gupton

7416-G Pebblestone Drive

Charlotte, N.C. 28212

Gupton is a free-lance writer and am

electronics teacher at the Umon County

Career Center in North Caroiina. This is

the second in a two part series of articies on

his students' experiences with an Aitair

680b computer. (For Part I see "Students

Find Aitair 680b Kit Easy to Assemble,"

COMPUTER NOTES, May 1977, pp. 12-

14.)

In Phase II of the Altair 680b kit

assembly, my students developed an IC

logic test clip for the final electrical check-

out and error detection before applying

power to the system.

First, they carefully examined each

subassembly of the 680b kit—the power

supply, the front panel and the main board.

The assembly checkout revealed two

microscopic solder bridges on the main

printed circuit board. Apparently, the low-

temperature soldering irons have a tenden-

cy to lift hairline threads of solder when

removed from the soldering point. The

remaining checkout showed professional

workmanship and was a credit to the

students.

Although two defective SPDT front

panel switches had to be replaced, stu-

dents went ahead with the next step and

checked the circuit voltage and logic state

on the front panel and main board. The

power supply and voltage regulating

circuits were fine. Front panel LED's

turned on as switches were flipped from

zero condition to one condition. Everything

seemed to function according to the

assembly manual. But students still

wondered if they had the proper logic

conditions on the logic-integrated circuits.

Have you ever tried to juggle a schematic

diagram, position and hold a printed circuit

board, handle two snake-like meter probes,

keep one eye on the meter and keep a

wandering test probe on a specific pin of an

IC -- all at the same time? It's difficult for

even expert computer technicians, so my

students had a number of problems. What

they needed was an inexpensive "student-

proof' device which would tell the logic

state and the input voltage of an IC without

a meter.

AP Products, Inc., Painesville, Ohio

and Radio Shack National Headquarters,

Fort Worth, Texas donated 14-pin and

16-pin IC test clips. Radio Shack also

donated subminiature LED's and an ample

supply of one-quarter watt resistors.

Students only had to come up with the idea

and assembly time for an IC logic test clip.

Of course, nothing always goes as

planned. Although we received the IC

test clips and resistors, the LED shipment

was delayed, and we received only some of

them before school closed for the summer.

However, students did complete the 14-pin

IC test clip, and with the exception of the

LED's they also wired the 16-pin logic

tester.

Students felt that the schematic

drawing and assembly illustration included

with this article would help other Altair

680b owners who want to construct a

similar logic IC test clip.

Unfortunately, the school year ended

before students could begin writing

programs. But that will be one of the first

projects for the next school term. Hope-

fully, we will then be able to get a keyboard

interface and a cassette tape interface to

really make our Altair 680b hum

er.. .compute!

D = LED (RadioShack 276-042)

R = 150 O H M '4Watt Resistor

TC= !C TEST CUP (RadioShack 276-1950 14pin
-1951 16pin

CN/September, 1977 Fifteen

What ' s a M ic rocompu te r C!ass

w i t hou t an Aitair 8 8 0 0 b ?
By Linda Block!

Two trade schools in Albuquerque

recently began offering microcomputer

courses using Altair 8800b computers as

teaching aids.

Throughout the year, North American

Technical Institute (NATI), which teaches

only electronics and math, offers "Micro-

computer Circuitry (361)," and Albuquer-

que Technical Vocational Institute (TVI)

offers "Digital Circuits IV" to students

with a basic knowledge of electronics. The

courses are part of each school's Associate

of Science degree in Electronic Engi-

neering Technology.

Both schools use their Altair 8800b

with 5K bytes of memory to teach students

how to run the system, program in machine

language, and interface with various

1/0 devices. Assembly is not covered in

either class. However, each class empha-

sizes different aspects of microcomputing.

NATI Director Roy Stone said his school's

main goal is employment security. "So

whatever we teach is designed to help

students get a job as an engineer or

technician in the computing field," he

said. "We're very responsive to students'

needs."

NATI instructor Dennis Crunkilton

said since the school is primarily hardware-

oriented, theory, design, and troubleshoot-

ing make up the majority of the course.

"Students are taught only a minimum of

programming which will allow them to

understand the hardware workings of the

8800b," he explained. NATI does offer a

separate course on "8080 Machine

Language" and is also planning more

software classes (BASIC and Fortran) in

the near future. Stone said those classes

will begin as soon as the school orders

several more Altair computers with 32K

bytes of memory and five more terminals.

"Although we'll offer both BASIC and

Fortran, we really prefer Fortran because

so many of our graduating students work

with scientists," he added.

Crunkilton said the decision to use an

Altair 8800b for the class was due, in part,

to the new Altair Timesharing BASIC. He

said its cost-effectiveness really sold him

on Altair microcomputers. "With mini-

computers, you'd have to buy many

terminals. A few years ago, I would have

laughed if anyone had even suggested a

timesharing system could be set up with

microcomputers." But now, by using

functioning with TV! instructor, Ceoi) Lennox.

Altair-compatible options, Crunkilton said

the capabilities of Altair microcomputers

can be expanded to that of minicomputers.

"So I can teach students about minicom-

puters on our Altair 8800b. This is just one

of the advantages microcomputers have

over minicomputers," he said.

TVI instructor Cecil Lennox said in

addition to working with the Altair 8800b,

his students study the circuitry on an 8080-

based microprocessor with 256K bytes of

memory and also work with a PDP/11

minicomputer. Troubleshooting is not

covered in the class.

Lennox said TVI plans to expand the

course to a full-time digital program that

includes troubleshooting and programming

in BASIC, machine language, Fortran, and

Cobol. He said in the fall TVI will bid on

three new systems with 8K and 16K bytes

of memory and video terminals to use in

these classes.

A 15-week night class aimed at people

in the electronics/minicomputer industry

will also be offered at TVI this fall, he said.

"Students will develop their own plans for

a microprocessor and then build a micro-

computer with IK bytes of memory," he

explained. "The class will also include

troubleshooting. It will be good hands-on

experience," he said.

The two instructors and Stone said

Twenty-Two CN/September, 1977

Beginning in October, Lennox will also
teach an eight-week microcomputer course
at MITS. Geared for people with a non-
technical background, the main goal of the
course is to provide an overall picture of an
integrated computer system, including the
fundamental anatomy of a computer, the
mainframe, peripherals, system hook-up,
and software.

capable students with electronics exper-

ience don't have any problem finding a job

just about anywhere in the country. "Most

students are working even before they

graduate," said Stone. "Because so few

schools in the U.S. teach our in-depth level

of electronics, there's a great demand for

industrial instructors, field engineers, and

technicians." Stone said this demand

can't be met by private industries or public

universities. "Neither can offer the

necessary in-depth approach to electronics.

Universities don't set up such a program

because they need to turn out well-rounded

students," he explained. One solution

Stone suggested is that industries encour-

age employees to attend electronics

schools and pay for their tuition.

With the current rapid expansion of

the electronics Held, even instructors must

keep up-to-date with the many new

changes. This sometimes means going

back to school. In order to learn more

about microcomputers for his "Digital

Circuits IV" class, Cecil Lennox spent

many half-days at MITS this summer

studying the Altair 8800b schematics and

circuitry and various 1/0 devices. Lennox

said learning about 1/0 devices was more

difficult and required a great amount of

concentration. But he said 1/0 devices are

an important part of his class at TVI. ' 'The

industry is particularly demanding people

who have training in 1/0 devices to control

industrial processes," he said.

CN/September, 1977

TV) instructor, Cecil Lennox, shows one of his students fundamentals of Aitair S800b

NAT) Director. Roy Stone, says electronics students have little trouble finding jobs after

Seventeen

Programmabte t/O

M a d e Possibte w i th the P)A

By Dave Antreasian

The PIA - magical black box with

multi-functions, a baffling name and as

many pins as an 8080 chip. How is it used

and why?

Before answering these questions, it's

important to realize that the days of

simple, discreet component circuitry are

quickly vanishing. Since it's obviously

easier and less costly to produce a product

with only a few parts, the current trend is

toward higher integration assemblies.

However, IC manufacturers cannot be

expected to produce a specialized chip for

the millions of diverse electronic products

on the market today. For this reason,

highly condensed yet extremely versatile

ICs like the PIA will become increasingly

popular in the future. However, with this

increased versatility, designers will have to

provide more control information (especial-

ly mote software control) to define func-

tional conditions to the chip. Hopefully,

this article will clear up some of the

mystery and confusion regarding initializa-

tion of the PIA.

6820 PIA

The (6820) peripheral interface

adapter is actually a highly condensed data

bus buffer system complete with hand-

shake lines. Used on several of the 8800-

based MITS cards (Altair 88-ADC,

88-AD/DA, 88-4PIO, 88-PCI) and 680

cards (Altair 680 Universal I /O, 680-PCI,

680-AD/DA), the 6820 contains enough

circuitry to replace approximately 10

standard TTL IC's.

Functions of the 6820 include two

independent sections -- A and B. Each

contain:

1. Eight data lines which can be

independently set up as inputs or

outputs (or both be reinitializing

during system usage and multiplex-

ing from one function to the other).

2. An independent input (Flag) line

CA1 or CB1) with presetable transition

polarities (also enabling or disabling

respective interrupt request (IRQ)

lines).

3. An Input/Output line (CA2 or CB2)

which can be set up as either an input

flag similar to CA1, CB1 or used as an

output line to strobe external circuitry.

If used as an input, this flag is inde-

pendent of the CA1, CB1 flag. If used

as an output, this line can be set

directly by writing a command word to

the Status Register or by a READ/

WRITE command to the DATA Regis-

ter(WRITE for Section B, READ for

Section A). By re-initializing during

system usage, the Input/Output

functions of this line can be multi-

plexed. (See Fig. 1 for a block

diagram of the IC.)

4R/W and " E " lines

The R /W line is used by the PIA to

define either a READ data command from

the PIA or a WRITE data command to the

PIA. A low-to-high transition of the " E "

line is used to strobe data into the PIA or

latch data to be read by the CPU. Note that

when writing to the PIA, data is latched

onto data lines defined as output lines but

is not latched when such lines are treated

as input lines.

Reset Line

The reset line is used to clear all

internal registers, set up data lines as

inputs and set up CA2, CB2 lines as inputs

with IRQ lines disabled. Initialization soft-

ware must redefine all functions after a

reset is applied.

Register Selection

There are three internal registers in

each section:

1. Status Register - used to specify

transition polarities of flag lines and

enable interrupts.

2. Direction Register -- used to speci-

fy direction of data flow for each of

eight data lines. (Useful during ini-

tialization sequence only.)

3. Data Register -- accessed when

reading from or writing data to the

PIA.

Usually, the Direction Register will

not be accessed except during initiaii-

zation. It has the same channel

address as the Data Register and is

accessed by writing a (O) into bit 2 of

the Control (Status) Register. Once

this is done, all calls to the Data Regis-

ter Ch. # will access only the Direction

Register, not the Data Register.

Therefore, the following sequence of

initialization is required for each

section of the PIA:

1) Access status channel with bit 2 (O)

2) Access data channel (now the

Direction Register) and define

eight lines as inputs (0) or outputs

(l's)

3) Access status channel and define

interrupt flags, CA2, CB2 outputs,

etc., with bit 2(1)

4) Next, access to data channel will

access Data Register.

Now repeat this sequence for the other

section.

After this has been done, initialization

is complete, and unless multiplexing of

functions is required, further register

access will be made to either the Data

Register (Read or Write) or the Status

Register (Monitor Flags, strobe output

lines,etc.)

The flag lines can be used by monitor-

ing the proper status bit (bit 7 for Section 8;

bit 6 for Section B) in software. When the

required transition (as specified during

initialization) occurs, the appropriate

register bit will be set high. If enabled (as

specified during initialization), the respec-

tive IRQ line will go LOW.* If both CA1

and CA2 lines are defined as input flags,

the proper transition at either will cause

the IRQA line to go low. The IRQ lines may

be tied to vectored tnterrupt bus lines if

desired. To clear the interrupt, a read

command to the appropriate Data Register

must be performed. (See Fig. 2 for a

condensed table of functional initializa-

tion options.)

Twenty-Two CN/September, 1977

Input/Output Strobe Lines

8 Data Lines CA1 CA2 CB2 CS1 S Data Lines

LOW = Data/Direction Registers

HIGH = Status Register

Figure 1.

CA2 DATA/ CA1

SETTING SPECIFIC STATUS tRQA IRQB (ORCB2) DIRECTION (ORCB1)

WORD BITS FLAG FLAG SETUP ACCESS SETUP

SETS Bit 7 6 s 4 3 2 1 0

UP CA f SETS IRQ FLAG 4. 'RQ DISABLED X X X X X X 0 0

CA1 CA11 SET IRQ FLAG - 'RQ ENABLED X X X X X X 0 1

(ORCB1) CAL A SETS IRQ FLAG A , IRQ DISABLED X X X X X X 1 0

TRIGGER CA1 A SETS IRQ FLAG A , IRQ ENABLED X X X X X X 1 1

INIT. DEFINES DATA CH. ADD AS DIREC. REG. X X X X X 0 X X

SETUP DEFiNES DATA CH. ADD AS DATA REG. X X X X X 1 X X

SETS CA2 f SETS IRQ FLAG A, IRQ DISABLED X X 0 0 0 X X X

UPCA2 CA2 f SETS IRQ FLAG A. IRQ ENABLED X X 0 0 1 X X X

(OR CB2) CA2 A SETS IRQ FLAG A . IRQ DISABLED X X 0 1 0 X X X

TRIGGER CA2 A SETS IRQ FLAG 4, IRQ ENABLED X X 0 1 1 X X X

SETS CB2 f FOLLOWiNG E 41, CB2 A WHEN glT 64 X X 1 0 0 X X X

UP CB2f FOLLOWING E A .CB2AONNEXTEA X X 1 0 1 X X X

CB2 CB2 SET t DtRECTLY FROM STATUS WRtTE X X 1 1 0 X X X

OUTPUTS CB2 SET A DIRECTLY FROM STATUS WRITE X X 1 1 1 X X X

SETS CA2 f FOLLOWING E A 2, CA2 A ON BIT 7 A X X 1 0 0 X X X

UP CA21 FOLLOWING E A , CA2 A ON NEXT E A X X 1 0 1 X X X

CA2 CA2 SETf DIRECTLY FROM STATUS WRiTE X X 1 1 0 X X X

OUTPUTS CA2 SETA DtRECTLY FROM STATUS WRtTE X X 1 1 1 X X X

NOTES

X Don't Care

A Low-To-High transition signai

' A High-To-Low transition signal

""Similar to an open-collector output-pull up

to Vcc, Active LOW.

* CA1 & CB1 are inputs only

* CA2 & CB2 can be inputs/outputs

* IRQ FLAGS are interrupt flags set only

by input lines as setup in initialization

1 CB2 on the next E following a WRITE command to the Date register

2 CA2 on the next E following a READ command to the Data register

Figure 2.

(they cannot be set by software). They

are always reset by a data read from the

appropriate section.

* Trigger transition selected for flag lines

will always set status bit flag regardless

of IRQ ENABLE/DISABLE. If flag is set

and interrupts are then enabled, IRQ

line will immediately go active (LOW).

Note that sections (A) and (B) are identical

except when using CA2 and CB2 as outputs

CN/September, 197 7 Nineteen

GUTCHES
Troubteshooting the 88-4P!0

By Bruce Fowler
MITS

Using the Altair 4PI0 board permits
the input and output of data in parallel
form. Unlike the serial 2SI0 or ACR
boards, the parllel data has no framing
(start and stop bits) associated with it. The
serial start bit tells the ACIA or UART that
new data is being entered. Parallel data
may change several times before the valid
data is stable, so some means is required to
tell the 4PIO when valid data is present.

This can be done by a handshaking
signal to either CAl or CB1 (and some-
times CA2 or CB2). An active transition on
the CAl or CB1 level causes bit 7 of the
appropriate control register to go high. So
if bit 7 of the Control Register is monitored,
the CPU can tell when new valid data is
ready to be input. While the CPU inputs
this new data, the output terminal must
keep it stable. This input data is not
latched into the 4PIO chip.

Inputting on a 4PIO can be compared
to an enabled buffer. When the CPU has
input the data, bit 7 of the corresponding
Control Register is cleared to zero, thus
denoting that no new data is waiting to be
input. Another handshaking signal may be
used to tell the output terminal that more
data can now be sent. Note also that unlike
the UART and 2SIO, no error detection
takes place. The 4PIO chip (the 6820 PIA)
does not generate parity or check for
overrun. Overrun error occurs when data
is sent before the previous data has been
read by the receiver. It is the responsibility
of software and hardware externa! to the
6820 to avoid overrun errors.

By the same reasoning, the 4PIO must
tell the output terminal when new data is
ready for it. This is again done by hand-
shaking signals, usually CA2 or CB2.
These tell the output terminal when new
data exists. Unlike parallel input, data to
be output is latched into the 4PIO chip.
This allows the 4PIO to keep outputting the
same data while the CPU does other tasks.
Otherwise, the CPU would have to wait
until the output terminal indicated that it
has strobed in the data.

As with the ACIA (on the 2SIO board),

6S29 must be written into or initialized
s i iware. The immense variety of

x- a Mnations may be confusing to the user.
If the 4PIO Theory of Operation Manual is
inadequate, see "Software Initialization of
Parallel and Serial I/O Boards," by Pat

Godding, June 1976, CN or "4PIO Opera-
tion," by Bill Kuhn, October 1976, CN.
The best source for specs is M6800 Micro-
computer System Design Data from
Motorola. Osborne's INTRODUCTION TO
MICROCOMPUTERS, Vol. 2, SOME
REAL PRODUCTS also has an explanation
of the 6820. (Please note the error on p. 6-
48 of this book. Bits 6 and 7 of the Control
Registers are cleared by a read on the Data
Register and not on the Control Register.)
In spite of this error, the book explains the
6820, especially handshaking. I used the
interrupt input and output handshaking
configuration as described in this book to
check the 4PIO.

TROUBLESHOOTING

Problems with the 4PIO can occur in
several areas: wait circuitry, selecting and
control circuitry, and the data lines. Most
problems can be isolated by single step-
ping an input (IN) or an output (OUT)
instruction on the data or control channel.
Readers with an Altair 8800B should not
use the M l single step option for the
following. The following deals with
the first port of a 4PIO addressed at
location 40 (octal). Users should be able to
alter the following explanation so that it
applies to their particular case.

WAIT CIRCUITRY

The 6820 was designed for a slower
running microcomputer (Motorola now
manufactures a faster 6800 and family). A
wait state is required for inputting data
from the 6820. To check the wait circuit,
run the prgram in Table 1. If low-going
pulses occur at pins 13, 14 and 15 of IC C,
then the wait circuitry is working. If not,
check pin 2 of IC 0 for low pulses. If no
pulses are present, trace logic back to
PWAIT (which should be pulsing on the
bus) and to POC (which should always be
a high level) on the bus. Repair is neces-
sary. If this is not the problem, compare
levels while the program is running to
column A of Table 2. Trace logic back to
the bus for any discrepancies. Check the
clock to IC 0 by stopping the computer and
examining to location 000. Compare the
levels on the 4PIO board to column B of
Table 2. Press single step two times and
monitor pin 13 of IC 0 for a low pulse.
Compare levels to column C of Table 2.
Repair as necessary.

CHIP SELECT AND REGISTER SELECT

When inputting or outputting to a

6820, all three chip selects must be active

or no data transfer takes place. There are

four addressable registers within the

6820 — two for section A and two for section

B. RSO and RSI select one of the four.

CONTROL SIGNALS

One of the three control signals, RST,
simply clears the 6820 when the chasis is
powered up. R/W is the opposite of SOUT.
If an output instruction is executed, SOUT
will go high, causing a low R/W. R/W
controls the bi-directional bus direction of
the 6820. All timing is centered around the
enable signal, which is derived from the
logical OR of PWR and PDBIN. PWR is
active when an output instruction is
executed, and PDBIN is active when an
input instruction is executed.

CHECKING DATA LINES AND CONTROL

SIGNALS

To test the data lines as well as the
above mentioned signals, do the following.
Connect a wire to ground, perhaps the
chassis itself. Toggle in the program in
Table 3 up to location 030. For the follow-
ing, press single step the given number of
times. Check the TTL levels and repair as
necessary. Then continue on single
stepping from the point left off in the
program. Examine to location zero. Press
single step four times and compare levels
to column A of Table 4. Press single step
three more times and compare levels to
column B of Table 4. Press single step
three more times and compare levels to

] I i !
t -

CB 2 (output) I'

^ J
I

i !
' i

CAl (input)

t

CA2 (output) jf

]

CB1 (input) j/

l
i

i ' :
! ! ! ! i '

A A ^ V ^ A , /
Part Part Part Part Part
A B C E A

Figure 1 - Handshaking Signals

Twenty-Two CN/September, 1977

column C. Press single step five more

times; compare to column D. Press single

step 13 more times and compare to

column E.

At this point data flows straight from

PA0-PA7 to data bus lines DIO-D17. The

data shows up on the data lights. Since

nothing is connected to PA0-PA7, all highs

should appear on the data lights. TTL

logic, which is what section A expects,

interprets open inputs as highs. If one or

more of the data lights do not light, trace

the appropriate data line from the 6820 to

the bus, looking for shorts. Repair any bad

ICs when found. Take the ground wire and

connect it to PA0-PA7 one at a time. By

doing this with the 4PI0 cable inside the

circuitry, it will also check the cable. (See

Table 5.) Be extremely careful not to short

any two points together. As each PA data

line is grounded, the corresponding data

light on the front panel should go out.

Otherwise, trace the logic and repair as

necessary.

ECHOING

To check the 4PI0 data lines fully, an

echo is required. Don't rely on the output

terminal, since it may or may not be

functioning. Thus, an echo plug is

required. Take a DB-25 male pin connector

and wire it according to Table 5. If one is

not available, wire the corresponding pins

of the 6820 socket together as shown in

Table 6. You may want to take out the 6820

to avoid overheating it. This wiring simply

connects section B (PB0-PB7, CB1, CB2)

to section A (PA0-PA7, CA1, CA2). The

program in Table 3 initializes the 6820 so

that section B, which can drive more

current, is output, and section A is input.

Toggle in the full program in Table 3.

It will be used later for testing handshak-

ing, and is thus extensive. Run the pro-

gram. Stop the computer. If the address

lights show address bit A7 high, then the

4PIO echoes data correctly. Go on to the

next section. If the address lights show

address sit all high, then a transmission

has occurred. The byte that was output is

stored in location 000101. The byte that

was input is stored in location 000100.

Find which bits do not match, and trace the

logic for the corresponding data line from

the bus to the 6820 and around the echo

plug to the 6820. (The input data line has

already been checked). Look for opens and

shorts on the data lines. If another 6820 is

available, replace the 6820 with it. Notice

that when data is output from the 6820,

from the next enable pulse on until new

data is output, that data will be continually

present on the output pins. Output opera-

tion can be checked by measuring the

levels on the assigned output pins of the

CN/September, 1977

6820 and knowing what was output. An

input will temporarily tri-state section B

data lines if they are assigned as outputs.

HANDSHAKING

Handshaking signals are provided to

announce the presence of valid data. To

check the operation of the handshaking

signals, put in 037 at location 044 and 055

in location 062 in the program of Table 3.

Examine to zero. Press single step 37

times. Monitor CB2 and CA2. Press single

step three more times. As shown in Figure

1, CB2 should go low and CA2 should go

high. Single step two more times. Bit 7 on

the data lights should be high, indicating

that bit 7 of Control Register A is high.

Otherwise, check for shorts. Single step

nine more times. CA2 should go low, while

CB2 should go high. Single step seven

more times. Bit 7 on the data lights should

be high, indicating that bit 7 of the B

Control Register is high. Otherwise, check

for shorts or opens on the CA2 or CB1 line.

The low-to-high transition of CA1 (or CB1)

sets bit 7 of Control Register A (or B).

Single step 17 more times to complete one

full loop. Make sure you are at location

035. Repeat this procedure one more time

(starting with single stepping two more

times). This should be enough to check

your 4PIO out for handshaking.

Figure 1 is useful for understanding

the 4PIO handshaking. In part A of Figure

1, the A section is ready for input (address-

es 50-025 of the program loop in Table 3).

At part B the B section outputs data,

causing bit 7 of Control Register A to

indicate that new data is available. CA2

goes high to inform the output device to

send no more new information to avoid

overrun error. Part C is where the CPU

polls the 4PIO to see if it has new data to

input. Part D is where the data is input.

This clears bit 7 of register A and sets bit 7

of register B. The active high level of

Control Register B bit 7 indicates to the

CPU that new data can be output. CB2 will

go low when new data is sent. This informs

section A that new data is present. CB2

sets bit 7 of Control Register A by causing

a transition on CA1. The cycle then

repeats.

This information should help 4PIO

users do extensive troubleshooting. But

if you're still having problems with your

4PIO board, please contact your local Altair

Computer Center or MITS.

TABLE 1

LOCATION OP CODE MENMONIC

0 0 0 3 3 3 I N , 4 0

001 040

0 0 2 3 0 3 JMP

0 0 3 000

0 0 4 000

TABLE 2 F O R F A I T C IRCUITRY CHECK

IC P IN LABEL A B C

N & P H L

e 9 P L H
e 10 S INP P L H

0 1 P H L

a 7 H H H

a 3 L L L

c 14 P H H

c 13 PRDY P H H

c 15 P H H

t 5 L L L

i A PMAIT P H H

O 2 P L L

H 3 POC H H H

p = PULSES, H= TTL H I5H 0 2 V .) . L=TTL LOU (C S V)

c o n t i n u e d

Twenty-One

G U T C H E S
Troub leshoot ing t he 88-4P !0

con t inued

TABLE 3

L O C A T I O N

0 0 0

OP CODE

0 7 6

MNEMONIC

MVI A

MEANING C H E C K I N G DATA

TABLE 4

L I N E S AND CONTROL S I G N A L S

0 0 0

3 2 3 O U T , 4 0 DONE TO TALK TO DDR OF A
LABEL I C P I N A B C D E

0 4 0

3 2 3 O U T , 4 2 DONE TO TALK TO DDR OF B
R / M J 2 1 L L L L H

0 4 2

3 2 3 O U T . 4 1 SET A UP AS ALL INPUTS
CSO J 2 2 H H H H H

0 4 1

0 7 6 MVI A
C S 2 J 2 3 L L L L L

0 1 0 3 7 7

3 2 3 O U T , 4 3 SET B UP AS ALL OUPUTS
CS1 J 2 4 H H H H H

0 4 3

0 7 6 MVI A
E J 2 5 H H H H H

0 4 4

3 2 3 OUT, 4 2 TALK TO A ' S DATA R E G I S T E R
D 7 J 2 6 L L L H *

0 2 0

0 4 2

3 2 3 OUT, 4 0 TALK TO B ' S DATA R E G I S T E R
D6 J 2 7 L L L H a

0 4 0

0 0 6 MVI B SET UP R E G I S T E R B AS COUNTER
D5 J 2 8 L L L H *

0 0 0

3 3 3 I N , 4 1 CLEAR B I T 7 OF A
D4 J 2 9 L L L H a

0 2 6

0 4 1

3 3 3 I N , 4 3 CLEAR B I T 7 OF B
D3 J 3 0 L L L H *

0 3 0

0 4 3

0 0 4 INR B
D2 J 3 1 L L L H *

3 1 2 J Z I F ALL C O M B I N A T I O N S T R I E D STOP D1 J 3 2 L L L H
2 0 0

D1 3 2 H

0 0 0

1 7 0 M O V A , B
DO J 3 3 L L L H a

3 2 3

0 4 3

OUT, 4 3 OUTPUT BYTE TO B RST J 3 4 H H H H H

0 4 0

3 3 3

0 4 0

I N , 4 0 CHECK TO SEE I F A R E C O G N I Z E S R S I J 3 5 L H L L L

3 4 6

2 0 0

A N I THAT DATA I S READY TO BE

INPUTTED
RSO J 3 6 H H L L L

3 1 2

0 4 6

J Z A 1 L L L L H

0 0 0

3 3 3 I N , 4 1 INPUT THE BYTE FROM A
B 1 L L L L H

0 5 0

0 4 1

1 1 7 M O V C . A SAVE BYTE TO BE OUTPUTTED
A 15 H H H H L

2 2 0 SUB B COMPARE I T TO BYTE OUTPUTTED C 1 H H H H L
3 0 2 J N Z I F TWO DO NOT MATCH JUMP

H H H H

OOO

0 1 0

AND STORE BYTES -a = VALUE MAY BE E I T H E R H I G H OR LOW

0 5 5 3 3 3

0 4 2

I N , 4 2 S E E I F B R E C O G N I Z E S THAT DATA

MAS READ BY A

3 4 6 A N I TABLE 5

0 6 4

0 6 5

000200
000201
000202
001000
001001
001002
0 0 1 0 0 3

0 0 1 0 0 4

0 0 1 0 0 5

001006
0 0 1 0 0 7

001010
001011
001012

200
3 1 2

0 6 4

000
3 0 3

026
000

3 0 3

200
000
1 7 1

062
100
000
1 7 0

062
101
000
3 0 3

010
010

J Z

JMP

ECHO M I R I N G FOR D B - 2 5 CONNECTOR

JMP

MOV A , C

STA

MOV A, B

STA

P I N LABEL CONNECTED TO P I N LABEL

2 CA1 1 3 CB2

3 C A 2 12 CB1
LOOP AROUND AND TRY 4 PAO 2 0 PBO

ANOTHER BYTE 5 PA1 2 1 PB1

1 0 P B 6 I S P A 6

LOOP WHEN DONE 11 P B 7 19 PA7

14 P A 2 2 2 P B 2

1 5 P A 3 2 3 P B 3

1 6 P A 4 3 4 P B 4

ERROR ROUT INE 17 P A 5 2 5 P B 9

STORE INPUTTED BYTE I N 1 0 0 P I N NUMBERS REFER TO P I N S ON D B - 2 5 CONNECTOR

JMP

STORE OUTPUTTED BYTE I N 101

LOOP TO SHOW THAT ERROR

HAS OCCURRED

TABLE 6

6 8 2 0 ECHO W I R I N G

LABEL P I N CONNECTED TO LABEL P I N
CA1 4 0 CB2 19

C A 2 3 9 CB1 1 3
PAO 2 P B O 1 0

PA1 3 P B 1 11
P B 6 16 PA6 a
P B 7 1 7 PA7 9

P A 2 4 P B 2 12
P A 3 5 P B 3 13
P A 4 6 P B 4 14
P A 5 7 P B 5 15
P I N NUMBERS REFER TO P I N S ON 6 S 2 0

Twenty-Two CN/September, 1977

Bits and Pieces
R/W Means Read)t and Weep

By popular demand we're reprinting

the following letter to the Editor (CN,

August, 1975). It should provide some

comic relief for those of you who are

struggling through your first programs.

Wendell S. Rice

Chief Engineer

Data Documents Systems Corp.

Merriam, KS

Software Package No. 69

Altair SUPER EXTENDED BASIC - $1495.

When purchased with an Altair, 42K

memory and either a duplex I/O board and

4K of write-only memory, you have our

deepest sympathy.

INSTRUCTION STATEMENTS:

CCS Chinese Character Set

BH Branch and Hang

BSO Branch on Sleepy Operator

DO Divide and Overflow

RPB Reverse Parity and Branch

ARZ Add and Reset to Zero

WWLR Write Wrong Length Record

SRSD Seek Record and Scar Disc

RC Read Chaos

TDB Transfer and Drop Bits

EROS Erase Read Only Storage

UER Update and Erase Record

CM Circulate Memory

M W M Move and Wrap Memory

DIA Develop Ineffective Address

LMB Lose Message and Branch

SC Scramble Channels

LC Loop Continuous

BIM Branch on Index Missing

CD Create Data

WOS Write only Storage

BLI Branch and Loop Indefinite

HCF Halt and Catch Fire

BBI Branch on Bumed-out Indicator

BPO Branch and Power-off

II Inquire and Ignore

AI Add Improper

ARZ Subtract and Reset to Zero

RI Read Invalid

WNR Write Noise Record

ED Eject Disc

EIOC Execute Invalid Op Code

RNR Read Noise Record

DSP Destroy Storage Project

MDB Move and Drop Bits

MLR Move and Lose Record

MC Move Continuous

RT Reduce Thru-put

IOR Illogical " O R "

IAND Illogical " A N D "

UCB Uncouple CPU's and Branch

EO Execute Operator

RBG Random Bug Generator

RBG Random Bug Generator

(Special Feature)

IIB Ignore Inquiry and Branch

CASH GRANTS

OFFERED

FOR SURVEYS

OF PROGRESS

!N ROBOTICS

The United States Robot ics Soci-
ety is offering three gran ts of $ 1 0 0
each to s tuden ts w h o survey prac-
tical activity in research and devel-
o p m e n t on robots in specified areas
of the wor ld . The surveys mus t be
per formed for academic credit w i t h
formal approval by appropr ia te
professors .

W i t h the sudden rise in the use
of personal , privately o w n e d com-
puter sys tems , private research
and deve lopment in robot ics and
artificial intelligence has surged .
More than seventy membe r s of
USRS^* a lone report active w o r k
on robots . The Society is seeking
an est imate of robot ics activity

9 wor l dw ide , and these first gran ts
3 are the beginning of a general
3 search for the robots .
§ Gran ts will be m a d e for surveys

of: The United States Wes t of t he
Mississippi , the United States East
of t he Mississippi and Canada .
Future gran ts will be made for sur-
veys of other areas.

The reports wili be publ ished as
part of the basic robot ics literature,
e s t a b l i s h i n g t h e i r a u t h o r s a n d
superv isors as impor tan t con tac ts
in the field.

Proposa ls f rom appl icants are
due on or before 3 0 Sep tember
1977 . Comple ted reports are due
on or before 3 0 J u n e 1 9 7 8 .

For details, write:
Survey Grants
United States Robotics Society
Box 26484
A l b u q u e r q u e , N M 8 7 1 2 5

A S D C , A U G
Scheduted
to Move

The MITS Altair Software Division

Company (ASDC) and The Altair User's

Group (AUG) will move to Pertec's Micro-

systems Division (MSD) in Woodland

Hills, California at the end of September.

Marion B. Guerin, who was recently

named Sales Manager, Applications

Software for Pertec's Microsystems Divi-

sion (MSD), will be in charge of the move.

"Most of the MSD marketing activities will

be based in California," he said. "Having

the software operation in close proximity to

the other MSD marketing functions will

make it easier to coordinate and improve

the total marketing program." Guerin said

this will mean more documentation, more

support for dealers and just better overall

software.

Guerin said the move will not delay

any orders for programs.

FOR SALE:

Aitair 8800a

Unused 1975 version, 256 bytes. Factory

built and tested. $550. Ralph Reinke, 30305

Bob-O-Link Ave., Wausau, Wis. 54401. (715)

842-0196.

Attair 8800a CPU

$600.

88-4MCS 4K static memory card

$200
88-18MCS 16K static memory card

$800

88-DCDD disk drive and controller

$1500

88-2SiO seria) teietype interface

$150

88-ACR audio cassette interface

$150

New ASR-33 Teietype

$1000
All above units brand new, factory as-

sembled and tested. For more information

about the above seven products, contact:

Michael Clark, R.D. No. 3, Nazareth, PA.

18064. (215) 759-6873.

CN/September, 1977 Twenty-Three

ROBOTS
AN ESTIMATE OF THE STATE OF THE ART, AND AN INVITATION
TO PERSONS OF ADVENTUROUS SPIRIT AND INQUIRING MIND

We believe that the key discoveries
necessary to the art of robotics have al-
ready been made. We believe that be-
hind various national borders, behind
the doors of various scientific disci-
plines from biochemistry to microelec-
tronics, all of the primary technical
obstacles have been overcome, aH
feasibilities been proven, aH methods
become known.
We believe that what remains to be

achieved is principally the refinement
of systems app!ying existing technolo-
gies — and that this work proceeds
apace. We believe the world is about
to encounter (where? when?) ma-
chines that truly simulate the intel-
lectual and physical behavior of human
beings: robots.
Robots are on our doorstep. Robots

are almost within our reach. And we
within theirs.
Robots are as frightening as they are

alluring, as threatening as they are
promising. Yet whatever reservation
anyone may feel, there is now no turn-
ing back, no possibility of their denial
or prohibition. The development of
artificial intelligence proceeds not only
in the laboratories of governments and
industries, but also among the thou-
sands of individual amateurs and
hobbyists, free citizens exercising
their freedom with experiments in the
fascinating field of personal com-
puting. We believe that since they are
possible, robots are inevitable — "for
good or ill."
The United States Robotics Society is

established "for good" — for the good
of mankind — not in opposition, for
opposition is idle, and not in advocacy,
for advocacy is unnecessary. We invite
the support and active participation of
all persons who can face the Age of the
Robot with the appropriate curiosity
and spirit of adventure.

Intelligent machines for production

and service — tireless, able to under-
stand commands and carry them out
sensibly without feeling a need to
make policy for themselves — may be-
come the long-heralded boon to
humanity, lifting ancient burdens of
toil and suffering. But if they were to
be developed "in the dark" -- if they
were to be sprung upon us full-blown,
without our preparation — the reaction
might be disastrous. The survival of
our own society may depend quite
soon (how soon?) on our ability to deal
even with "friendly" robots. If we
ignore them, if we are incompetent in
their fields, we are surely not serving
our own interests.

Intelligent weapons now appear prac-
ticable within the next decade or two
— systems, for example, that can
differentiate between friend and foe
automatically, through their own sen-
sors and judgement, If such weapons
are developed anywhere in the world,
they will be extraordinarily dangerous
to any society which has not learned
how to deal with them.
Robotics has charm not only for

trained technicians and professionals
but also for millions of persons without
the skills and resources to participate
directly in the work. Communication
about robotics, like robots themselves,
is inevitable, — through publicity,
rumor, espionage, and now through
The United States Robotics Society.
This organization will assume the im-
portant task of identifying discoveries,
gathering supporting data from the
hidden recesses where they rest, col-
lating, publishing, becoming a center
of information for all parties seeking
knowledge of current and historical
activity in robotics. We urge you to be
one of us — for just $12/year.

Benefits to USRS Members
Growing Year by Year

W Certificate of Registration as USRS
Member.

* USRS Newsletter, USRS bulletins,
other correspondence from the Society
as occasion demands.
W Aid in contacting other USRS
Members in home regions, toward
establishing USRS events.

* Opportunity (Qualified) to officiate
as USRS Representative at Regional
and National robotics shows and
exercises.

W Service (Optional) as USRS Con-
tributing Correspondent,
t Participation in the determination
of procedures for investigating, report-
ing, archiving, and disseminating
information relevant to robotics . . .
and
* Privileged access to the Library of
Robotics to be established by USRS.
& Discounts as may from time to time
be arranged by USRS on behalf of
members — with publishers, manu-
facturers/distributors of robotics re-
lated materials. (Note: this benefit
alone can be expected to repay the
moderate USRS Membership costs
many times over.)

United States
Robotics

Society
A Non-Profit Organization
Glenn R. Norris, President

Box 26484 Albuquerque,
New Mexico 87125

Application for Charter Membership

USRS
United States Robotics Society

Box 26484 Albuquerque, NM 87125

Enciosed is my check for $12 for enrollment and first-year dues

NAME

The following information is requested (OPTIONAL) to help ensure your full
participation in the benefits of the Society.

My interest in robotics derives from () intellectual curiosity ()academic training
() professional/business

Ptease tei) us more:

() 1 am interested in joining with others in locat USRS activity,

t might serve as () Correspondent () Official at USRS functions.

ADDRESS FOR USRS

COMMUNICATIONS. . CiTY. .STATE. ZIP .PHONE.

When the chips are down . -.
and troubleshooting is in order, always refer to Computer Notes
!n addition to articles that deal with troubleshooting procedures,
CN carries information on the latest hardware, software and appli
cations. C!\! is bound in a standard format that can be kept easily
in a three-ring binder as a ready reference for the computer
club or the individual user.

To insure that you never miss an issue, simply fill out the coupon
below and send it along with the subscription fee to:

/ ^ c o m p u t e r
notes a subsidiary of Pertec Computer Corporation

2450 Alamo S.E.

Albuquerque. New Mexico 87106

Please send me a 1 year subscription to Computer Notes.

$ 5 . 0 0 per year in U S. $ 2 0 OO per year overseas.

NAME:

ADDRESS :

CITY: STATE: __Z!P

COMPANY/ORGANIZATION

D Check Enclosed MC or BAC/Visa #-
Q Master Charge Exp Date
D BankAmericard/Visa Signature

C o w p M h ' M g A a s c o w e a f o w g w a y w

^Ae pasz" ^A ree y e a r s . C o w p M ^ e f sys-

t e m s , w A z c A p r e u z o M s / y w e r e o w / y

a ^ a z w a ^ J e o n a ^ z w e - s A a r w g ' o r reyz^a^

^asz ' s , A a u e w o w ^ e c o w e Hccessz ' ^ Je ^o

^Ae g e w e r a / p a ^ / z c . T w K o u a ^ ' f e ^ecA-

w o / o g y p r o / z c zew^ G?esz'gK a r e j ' ^ s ?

s o m e o / ^Ae / a c t o r s ? A a f s p a w w e ^ /^Ae

g r o w f A o / p e r s o n a ? c o w p M ^ e r s . T A e

S d O O wz'cro-

c o w p M ^ e r / r o w M/71S*,

/Mc . . w a s ; A e zMzYzaf

resz^/^ o / ^Aese <7e&e/-

O p w e K f S <2726? ^ A e

p a c e s e ^ e r o / ^Az's M e w

/ l ^ a z ' r 5 * y s ^ e w s w a y

aGfapfec? / o r w a w y

G?z'uerse zzses. cayz

a s s z ' s f azz<^ s a p p o r f

y o a r A a r J w a r e / s o / f -

w a r e zzeeG?s z'ẑ a ^ y

a s ^ e c ^ o / c o w p a ^ e r

opem/z'oz?. / ^ ^ z r w z c r o

c o w p M ^ e r s A a v e ^ e e n

zz^zf/zec? zzz r e s e a r c h

e ^ c a ^ ' o w a / p r o g m w s ,

p r o ce s s az?^

coK^ro/ a s a s wa?zy

ozi<ynza/, a s e r - g e w e z i z ^

a p p ^ c a h o M ^

^ / ^ a z r c o w p z ^ ^ e r w a z z z / r a w e s s ^ a r ^ a s

^ o w a s ^ 3 9 5 . M e w o r y azz<^ zw^ez face

c a p a M z Y z e s a r e e j c p a M ^ a ^ J e fArozv^A

^Ae Mse o / / 4 ^a z ' r p Jag-zw w o ^ a / e s .

- S o w e o / ozzr rece^z f a ^ z Y z o z z s p e r w z Y

p r o c e s s c o w ^ r o / , z'zzejcpewsz'^e w a s s

s t o r age a z i ^ azza/og' /o ^ z 7 a / eoziwrszoM.

E ^ e w z/ y o M A a ^ e we&er A a J azzy p r o -

g r a m w z ' ^ g experzezzce , / l / f a z ' r B / S ^ / C

/ a w g a a ^ e ca?z easz7y

^ze / e a r w e ^ az7G? z w p / e -

w e z ^ ^ e ^ . tVzYAz'w a

s A o r ^ perz'ocif o / ^z'we,

yozv wz7F ^ e so J^ZMg

c o w p ^ e j c p r o M e w s

w z Y A o a ^ z j ^ z c M ^ y .

/ ^ ^ a z r w z ' c r o c o w p a ^ e r

s y s ^ e w s a r e reac?z7y

a t w / a ^ J e / r o w azzy owe

o / ozvr K a h ' o M W Z 6 ? e

6 ? e a / e r s o r ^ A r o a g A

/ a c ^ o r y w a z 7 - o r ^ e r .

F a r ^ A e r zzz/orwa^z'ozz

w a y ^ze o^^azwec? ^ y

c o z z s a ^ w g y o a r ^ o c a f

/ U f a z r C o w p z / ^ e r Cew-

^e r o r c oM f a c ^ zwg a s

J*zrecf/y.

C D D G t ^

The Personal Approach 1o
Low cost Computing

M!TS, inc. 2 450 A!amo, S.E. Atbuquerque, N.tV). 87106

