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NEED AN tNEXPENStVE CRT? 
Buitd One Using an 

Attair 8800-Compat ib !e tnterface Card 
By Jim Wiggins 

400 Pemberton Terrace 

#116 

Kamloops, B.C. Canada V2C1T3 

Wiggins is an avid microcomputer hobbyist 

who pians to return to school to make 

computers his vocation. 

The CRT terminal and the floppy disc 
system currently seem to be the most 
desirable peripherals for microcomputer 
users. However, they are also the most 
expensive and for this reason the literature 
is replete with techniques for hobbyists 
to inexpensively built or buy their own. 
The following article describes how a 
relatively inexpensive, high-quality CRT 
terminal can be constructed using a com-
mercial Video Ram (VRAM) and an Altair 
8800 compatible interface card. 

The heart of the terminal is the VRAM 

($390), which is manufactured by: 

Matrox Electronic Systems 

P.O. Box 56, Ahuntsic Stn. 

Montreal, Quebec 

Canada, H3L 3N5 

The card itself, which unfortunately 

will not fit inside the Altair Computer case, 

consists of 2K of memory for a display of 

24 lines of 80 characters per line with each 

character being displayed in a 7 x 9 dot 

matrix format. The character set used in 

the standard MTX 2480A is the 128 charac-

ter ASCII+Greek. Custom designed as 

well as several other standard character 

fonts are also available. Because the 

required video signal is generated from the 

on-card memory, DMA is not required, and 

the card is read from and written into as if 

it were normal processor memory. 

.'t- '̂Mys 

Although the card contains 2K of memory, 

it appears as 4K on the address bus. This 

is due to the address decoding scheme. 

(See Fig. 1). Address lines A6 to AO 

inclusive access columns 0 to 79, and 

address lines A7 to A l l access lines 0 to 

23, while column addresses 80 to 127 and 

line addresses 24 to 31 are ignored. In a 

sense, this wastes memory address space, 
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NEED A N !NEXPENS)VE C R T ? 
continued 

but it isn't a real concern unless you have 

62K memory. 

Another important feature of the card 

is the data bus, which is bidirectional and 9 

bits wide. Bits 0 through 6 comprise the 

character code, and bits 7 and 8 are used to 

select one of four display modes (for each 

character): normal (00), half intensity (10), 

inverse video (01), and blink at 1 Hz rate 

(11). In order to simplify the interface 

card, I have tied bits 7 and 8 together so 

that characters are either norma! or 

blinking. However, other combinations, 

such as normal/inverse or inverse/blink, 

can be obtained quite easily. 

In addition to the address and data 

lines, there are several other input and 

output lines from the VRAM used by the 

display monitor and the interface card. 

Since both the composite (logic plus sync) 

and the logical video signals as weil as the 

horizontal and vertical blanking pulses are 

available, there are only a few restrictions 

on the type of monitor used. One restric-

tion is that the monitor must have a 

bandwidth of 10 Mhz minimum. It must 

also have a long persistance phosphor if 

the 128 character set fonts are used. The 

one 64 character font ( 5 x 7 dot matrix), 

upper case ASCII, is the exception to this 

in that a monitor with a standard phophor 

may be used. For readability, Matrox 

recommends that the monitor be 12 inches 

or larger. The vertical blanking (BV) from 

the VRAM is also used by the interface 

card as a status signal to control access to 

the VRAM card itself. 

Although the VRAM may be read from 

or written into during the beam trace time, 

a noticeable flicker results. For this 

reason, the BV signal and the interface 

card ensure that access to the card is 

during vertical retrace (4.61 msec). The 

chip select (CS), which is active low for 

read and write, and read/write (R/W), 

which is active low for write, are the only 

control signals from the interface card to 

the VRAM required for operation. Al-

though the actual timing relationships are 

not shown here, they are similar to those 

for the memory chips themselves, i.e. 

2102-1. The minimum read and write 

cycle times for these chips are 500 ns, 

which makes it technically possible to 

access VRAM without memory wait states. 

However, because the VRAM is separated 

from the interface card by six feet of ribbon 

cable, two wait states are used to ensure 

that data is stable during the write pulse or 

the processor read pulse DBIN. 

The interface card itself is shown in 

Figure 2 with IC A used to request the 

required wait states. Before examining the 

circuit, I would like to thank MITS for their 

indirect assistance in the design of this 

interface card. Owners of the MITS IK 

Static and S10B cards will note a distinct 

resemblance in the decoding, wait state 

generation, and interrupt enable circuitry. 
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(Apart from these areas of similarity, the 

design is all mine; patents are pending.) 

Not shown on the schematic of Figure 2 are 

2 hex buffers for the 12 address lines and 

pull-up resistors on the 8 data lines. While 

the Altair computer uses separate input 

and output busses, the VRAM uses a 

bidirectional bus which is split, using 

8T97s, ICs, F, G, and H. Four gates of F 

and 4 of G comprise the data in, and 6 of H 

and 2 of G are used for data out. To the left 

of the schematic, the ICs N and 0 select 

either the data out or data in lines, depend-

ing on the states of SOUT, SIMP, SMEMR 

and, of course, the address lines A12 to 

A15 (IC N6). DI is selected through IC 0 

pin 6, and DO is selected through IC 0 pin 

3. IC 0 pin 8 is active low during both read 

and write operations. It is this signal 

applied to IC L pin 12 plus the BV signal 

applied to IC L pin 13 that produces the 

chip select (CS) pulse at IC L pin 8. CS is 

also, possibly unnecessarily, a function of 

M l , because IC 0 8 will go low during the 

latter part of M l . IC L pin 11 also enables 

two gates of IC F via pin 15 of F. The R /W 

signal is applied through one to the VRAM, 

and the other is the source of the PRDY 

signal to the processor. 

There's also output port on the 

interface card. It's used for interrupt 

enable, which consists of the RS flip-flop 

comprised of the 4 gates of IC B. Data on 

the D01 line sets or resets this FF, and the 

effective write pulse for the port is gener-

ated when IC L pin 6 goes low. The output 

at IC L pin 6 is a function of PWR (IC L 2), 

SOUT (IC D 9), and the port address 

applied to pins, 1, 2, 4, and 5 of IC N. In 

this situation, it is the 4 most significant 

bits of the port address (which appears on 

both the upper and lower halves of the 

address bus) that cause the port to be 

selected. IC N 6 thus performs the dual 

purpose of selecting the output port as well 

as the memory space of the VRAM. This 

scheme does restrict users to 240D output 

ports, but that should be more than suffi-

cient. The execution of the instruction 

OUT 350 will, therefore, set or reset the 

FF, the output of which is applied to enable 

the interrupt gate at pin 4 of IC D. The 

signal that produces the interrupt is a 

function of the BV and is generated by IC E 

and M. The period of retrace is 4.61 msec, 

which is shortened to about 3.5 msec by 

IC E and is synchronized with phase 2 by 

IC M. The output of IC M at pin 9, which is 

active high, thus generated the interrupt at 

IC D 6 during retrace. This signal is also 

fed to IC G 4, DI7, where it can be moni-

tored by such memory reference instruc-

tions as MOV, A and M. 

The pulse at IC M 9 is shorter than 

BV, so D17 can be sampled during the final 

microseconds of that pulse. In that case, 

when the card is accessed, even though 

IC M 9 is low, IC L 13 will still be active 

low, and the CS pulse can still occur. 

The following program briefly illus-

trates the method of operation. The 

program simply fills the screen with a 

given character and loops. 

00MVI 

00 MVt 076 Set accum with desired character 
01 DATA 067 ASCII 7 
02 STA 062 Store accum 
03 L 100 
04 H 003 
05 LX! 001 Set reg pair B with tine increment 
06 C 200 thisisoneinbit7 
07 B 000 
10LX) 041 Set reg pair H with starting address of display 
11 L 000 

12 H 360 
13 MOVA,M 176 Move data byte form interface card to accum 
14 AN! 346 Clear off everything but bit 7-retrace status 
15 DATA 200 

16 JZ 312 !f zero not in retrace, so loop till retrace 
17 L 013 

20 H 001 

21 LDA 072 As in retrace, load accum with data 

22 L 100 

23 H 003 
24 MOVM,A 167 Move accum to VRAM 

25 !NX 043 tncrement column/line counter in reg pair H 

26 MOV A,L 175 Move reg L to accum-contains cotumn count 

27 AN) 346 Clear off bit 7, which is part of tine count 

30 DATA 177 
31 CP) 376 Compare column count with 80D-last plus one of column 
32 DATA 120 
33 JNZ 302 !f not zero, then more on tine to go 
34 L 013 

!f not zero, then more on tine to go 

35 H 001 
36 MOV A,L 175 Line compteted, so cotumn count in L to accum 
37 AN! 346 Clear off all but bit 7, which is part of tine count 
40 DATA 200 

Clear off all but bit 7, which is part of tine count 

41 MOV L,A 157 Move cleared column count back to L 
42 DAD 011 Increment line count by double add with reg pair B 
43 MOVA,H 174 Move line part of address in H to accum 
44 CP! 376 Compare with last line plus one 
45 DATA 374 This is 360Q plus 140, which corresponds to line 24D 
46 JNZ 302 !f not zero, then more lines to go 
47 L 013 

50 H 001 
5 1 J M P 303 Screen filled so loop 

52 L 000 

53 H 001 

This combination of Matrox 2480 with 

the Altair 8800 compatible interface card 

has resulted in an excellent but relatively 

inexpensive CRT terminal. Although I used 

a separate interface card (partially because 

of impatience), other users may not have 

to, since Matrox has been working on a 

card compatible with Altair computers and 

may now be producing it. 

The benefit of a separate interface 

card (apart from space considerations) is 

the freedom in being able to choose the 

aspects of the interface which are the most 

important, as I have done with the inter-

rupts and bits 7 and 8. Requirements will 

differ among people, and some may, for 

example, decide to access VRAM during 

horizontal retrace, which would about 

treble the data transfer rate. Using vertical 

retrace, the data rate is about 6000 charac-

ters per second; using horizontal retrace, 

rates of 18000 characters per second and 

greater could be achieved. As another 

example, latches could be implemented to 

use the full 9-bit data bus for reading and 

writing. The interface card described here, 

while more than adequate for my purposes, 

is therefore only one of many possible ways 

of building a viable CRT terminal with the 

Matrox VRAM. 
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CAREFUL BULL )N THE CHtNA S H O P 
A Cheap Approach 

to the Mechan ics of Robot ics 
O U S R S 

This is the first article in a three-part name" they reserve. Thus far, haif a 

series on buiiding a robot. Part n will dozen names have been spoken for, e.g. 

cover in detaii the mechanics of robot "S.A. Rossum," "D.I . Sossum," and 

buiiding, and Part ill will discuss applica- some folks whose reai family name is 

tions. Rossum have been listed. 

Members of the United States Robotics 

Society (USRS) are using the family name "Robert Rossum" is a writer of books, 

"Rossum" as a kind of collective pseudo- articles, and non-theatricai motion pic-

nym for their publications. Members who tures, who has spent most of the past 20 

prefer to be anonymous may publish years working in research and develop-

through USRS under whatever "Rossum- mental laboratories. 

Parti 

By Robert Rossum 

Someone once said that the most 

interesting thing computers ever do is to 

Mow hot air on your shoes while they hum 

and soak up money. An intelligent 

machine, no matter how clever, lacks 

charm if it just sits around like a bump on a 

log. Perhaps part of the current enthu-

siasm for robotics is a reaction to this static 

performance of our clever machines. 

Roboticists almost universally report their 

determination to construct mobile systems. 

The ordinary roboticist is usually a 

good thinker-upper, programmer, planner, 

and innovator but seldom a first-rate 

mechanical engineer and master machin-

ist. Although drawing conceptual plans for 

experimental mechanical systems is a 

necessary first step, actual construction 

and modification of mechanical creatures is 

prohibitively expensive in cash and time. 

The mobile systems built by institutions 

and private workers tend to be awkward, 

fragile, unstable, and uninteresting as well 

as expensive. The interesting machines 

that receive national publicity tend to be 

anthropomorphic monsters. One such 

recently publicized system is over six feet 

high and weighs several hundred pounds. 

It performs some remarkable tricks under 

the remote control of its master but looks 

mighty unstable on its small base. 

Watching it causes the uneasy feeling that 

if it dropped a wheel off the edge of a walk-

way, it would topple over, crushing dog, 

child, mailman, or Volkswagen. The 

publicity arising from that incident might 

not bring cheer to other roboticists. 

Even the cute little wheeled systems 

that experimenters set to snuffling around 

their laboratories have no more athletic 

prowness than is required to climb over a 

doorsill or up on a rug without stalling or 

upsetting. Conventional mechanical 

systems are generally proving unsatisfac-

tory for devices that are intended to 

simulate the performance of living things. 

The flaw in the simulation is not 

chiefly the lack of intelligence. David 

Heiserman, author of BUILD YOUR OWN 

WORKING ROBOT, has observed that his 

robots acquire behavioral characteristics 

of living creatures, responding to their 

environment in a surprisingly complex 

fashion. In his book, Heiserman said the 

fact that impresses him most is the sim-

plicity of the circuitry involved. He said a 

few basic sensory channels, simple 

reflexes, and a trifle of logic allow his 

machines to behave like simple animals. It 

may be that the devices are intellectually 

trivial, but since they can move, displaying 

their characteristics overtly, and can alter 

their performance in response to a 

changing environment, they are interest-

ing. Heiserman's mechanical systems are 

quite crude, but at least they do some-

thing. 

If experimenters today can develop 

cheap and dirty mechanical systems that 

any clumsy amateur can build in his own 

garage, the progress in robotics will be 

significant in the next few years. The 

purpose of this series is to briefly describe 

a cheap, not inexpensive, but cheap 

mechanism for many robotics applications. 

No detailed designs are offered, but roboti-

cists will be able to use the basic principles 

of the system without further elaboration 

here in print. 

In this electronic age, we think of 

robotics mechanisms in terms of electroni-

cally-controlled servosystems, stepping 

motors, and complicated, heavy gear 

trains. Consider servos. Since no mechan-

ical system if perfectly accurate, we must 

always provide a trial-and-error system 

that will let a free-moving device accomplish 

its tasks in spite of imperfection. For 

example, if you set your pet robot on a 

course for a fire hydrant a block away, you 

can be sure that the critter will miss the 

fireplug unless it knows one when it sees 

one and can hunt around as necessary to 

find the thing. Just aiming straight from 

where you are to the hydrant won't work, 

since irregularities in the pavement, 

uneven wear in the robot's wheels and 

gears, bad aim, or a dozen other problems 

will almost inevitably prevent the machine 

from going directly from one place to the 

other. The robot must be able to correct its 

course, to "zero in " on the target. Of 

course, when the machine changes its 

course, the correction is not likely to be 

prefect. It may over-correct or encounter 

more problems along the way. Ordinarily, 

a servomechanism is employed to make up 

for imperfections in the rest of a machine, 

to make the back-and-forth corrections 

necessary to guide or position a machine 

properly. The servo is precise in that it 

takes the machine to exactly the right 

position. But it's not necessarily "accu-

rate," since it doesn't follow a detailed set 

of instructions to get to a target. 

The distinction between precision and 

accuracy is important. If your robot is 

accurate, you may give it instructions such 

as: Move exactly north 315 feet and five 

inches. Then make a 90* turn to the left 
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(not an 89 turn or a 91 turn but a 90 

turn), and move exactly 19 feet and seven 

inches. Stop there, or you'll smash your 

little lens on the knobby thing that is 

sticking out of the hydrant. 

What are the chances that you really 

know exactly what the instructions should 

be and that your robot can carry them well 

out enough to get within six inches of the 

hydrant? Not very good, unless you have 

an uncommonly well-made, expensive 

machine (equipped with a magnificent 

inertial guidance system, perhaps) working 

in an environment without obstructions. If 

there are cracks in the sidewalk, you're 

in trouble. 

If your robot is equipped with sensors 

and servos, it can use instructions more 

like this: Move along the sidewalk to the 

north without falling off the edge or 

bumping signposts until you detect 

something that looks like a fireplug off to 

the left, about 300 feet along the way. Then 

move toward that hydrant until you're six 

inches from it. Stop there. 

Chances are good that the robot will 

go precisely where you want it to go. 

That's precision, not accuracy. The robot 

may be constructed with only lousy compo-

nents, may not be able to run accurately 

within Ave degrees, may be off by three 

percent in its judgment of distance, but it 

will do what you want it to do. Remember 

that living things are built entirely of 

lousy, individually unreliable, and irregu-

lar components. Even the brain is con-

structed of stuff that couldn't meet military 

specifications for purchasing, regardless of 

actual performance. 

Remember, too, that when an animal 

lifts its foot, it does not usually have to 

swing that foot clear around a 360 arc to 

return it to its starting position. Feet move 

forward and back, up, and down. Tails 

move to and fro. Muscles in living crea-

tures are paired. Your bicep pulls your 

forearm up, and your tricep pulls it back 

down. Mechanical servomechanisms 

usually work with paried motors, pulling 

things first one way, then the other, 

"zeroing-in." The builder is usually 

depressed by the realization that almost 

everything in his critter must be duplicated 

-all motors matched or at least reversible. 

One common ploy is to make the motor pull 

against a spring that returns a limb to 

"normal" position after the motor moves 

it. 

Robot designers usually provide a 

motor for an arm, a motor for a head, a 

motor for wagging the tail, etc. or very 

complex, heavy, power-consuming gear 

systems to accomplish all these functions 

with a single motor. But let's consider an 

alternative - the ancient double windlass 

mechanism. Its virtues for the roboticist 

are many. (See any encyclopedia; look 

under "captain.") 

BASIC SYSTEM 

Figure 1 (the motor) 

This box with an " M " on it is a motor. 

Figure 2 (motor with shaft) 

A long shaft protrudes from the motor. 

Figure 3 (pulleys added to shaft) 

We may place a pair of pulleys on the 

shaft. 

Figure 4 (upper lever added) 

Above the shaft at some arbitrary 

distance is Lever A, pivoted at its center. 

A 
1 Lever A 

Figure 5 (lower lever added) 

Below the shaft is Lever B, also 

pivoted at its midpoint. Our interest here 

is in getting Lever B to do something in 

particular when we move Lever A. 

Lever A 

A 

Lever B 

Figure 6 (Cords CI and C2 added) 

We connect Levers A and B with 

Cords CI and C2. The cords are wrapped 

loosely around the pulleys on the shaft so 

that when the motor turns the pulleys just 

spin inside the loose cords without affect-

ing them and the levers. 

Lever A 

Lever B 

Figure 7 (both levers canted to 

same angle) 

Lever A 

Lever B 

Suppose that you take hold of Lever A, 

tilting it upward at the left end. That pulls 

Cord CI tight around its pulley, but Cord 

C2 remains loose around its pulley. Here 

the mechanical magic begins. As Cord CI 

grips the pulley, the force of the motor 

begins to pull on the cord. Even if you lift 

the end of the lever very delicately with 

your fingertips, the cord, hence also the 

end of Lever B, will be pulled by the full 

force of the motor. You need only keep a 

bit of tension on the top part of that cord to 

apply the motor's full force to the task of 

lifting up the end of Lever B. 

If you pull the end of Lever A steadily 

up to some particular position, the motor 

will wind up the lower part of Cord CI until 

Lever B is cocked at the same angle as 

Lever A. Then the cord will begin to slip on 

continued 
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CAREFUL BULL !N THE C H ! N A S H O P 
continued 

the pulley, and the pulling force of the 
motor wiH be relieved. You have applied a 
small control force to the upper lever, 
causing the motor's force to be applied to 
the lower lever. In fact, a weight of some 
significance might be hanging from that 
left end of Lever B. 

Figure 8 (10 lb. weight hanging from 
Lever B) 

This is far more weight than you 
could lift with your fingertip. The motor 
would do the lifting, multiplying the 
control force greatly. 

Lever A 

Lever B 

Notice that when the Cord CI begins 
to slip, C2 is just on the point of growing 
tight. When the action stops, the windings 
of the two pulleys are slightly loose, just as 
they were when the action began. The 
system is all ready to perform again 
promptly when another control force is 
applied to a lever. If you pull up on the 
right end of Lever A now, Lever B will be 
returned to its original matching position -
sort of a bicep-tricep action. 

You've done two things -- controlled 
the position of Lever B by manipulating 
Lever A and multiplied the tiny control 
force with the force of the motor. These are 
both very important to the roboticist who is 
hoping to control the limbs of a mechanical 
creature. 

SOME MORE BASICS 
You may choose to amplify your 

motion as well as your control force. 

Twenty-Two 

Figure 9 (Cords on Lever B now attached 
appreciably closer to the pivot than on 

Lever A) 

Lever A 

Lever B 

Lever A 

In fact, your control motor might 
sensibly by a reversible shaded-pole 
motor. Motor experts say that a shaded-
pole motor can be held in a stalled condi-
tion indefinitely without damage, and 
that's an advantage. (As later article will 
discuss a mixed bag of alternative to con-
trol motors.) With signals from your 
robot's brain, presumably your personal 
computer, you can move Lever B either 
way automatically with appreciable force. 

Figure 11 (main motor shaft with more 
sets of pulleys) 

The shaft from the main motor may 
be equipped with numerous pairs of 
pulleys so that power may be applied at 
any point along the shaft to any chosen 
lever down below. 

If you now raise the left end of Lever 
A the same distance you did before, the 
force of the motor will be applied to Lever 
B in the same way. The same length of 
cord will be drawn up by the pulley, but the 
left end of Lever B will be moved a greater 
distance. You have multiplied both force 
and motion. 

The motor here may be as large as you 
like, depending upon the application. 
The control force you apply to Lever A 
may, in fact, be supplied by another motor, 
since your robot will probably employ an 
electrical system, and turning power off 
and on in electrical motors will be a 
straightforward matter. The control motor 
may be small, both in physical size and 
power. (The main motor may even be 
gasoline or steam powered, if you like, 
depending on your application and willing-
ness for your robot to breathe real smoke 
and fire with a variety of associated noises. 

Figure 10 (control motor on Lever A) 

Control Motor 

Lever B 

Figure 12 (flexible shaft with pulleys 
along its snaking path) 

The shaft may be flexible so that 
power can be transmitted from the main 
motor to remote regions of the robot in 
which it resides. 
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An important consideration at this 

point is shared power. Obviously, there's a 

limit to the number of pulleys you can put 

on the shaft of a given motor. There's a 

practical physical constraint of some kind 

to balance your every wish. If you tighten 

the cords at every point along the shaft, 

drawing power from the motor at each pair 

of pulleys, your chances of overloading the 

motor are very great. But there's the 

beauty of the system (well, one beauty 

among many) - it works like an animal. 

Like any animal, you rarely use all of your 

muscles at once. When you run, you may 

be using your leg muscles in an extreme 

fashion, but you are not simultaneously 

using your neck and arm muscles to their 

fullest extent. Chances are that you are 

not also trying to bite through a heavy 
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bone, too, drawing a great deal of energy 

in your jaw nulscles. 

That's a very significant factor in the 

design of animals. You have a certain 

amount of chemical energy stored locally in 

your muscles. When you move the 

muscles, you consume some of that avail-

able energy. If you exert the muscles 

greatly, you use up all that's available 

locally, and must get more sugar from the 

liver. With great exertion you can develop 

a severe shortage of energy locally. Luck-

ily, you seldom exert all muscles at the 

same time, so you don't develop a general 

deficit of energy. (However, people do 

sometimes die of overexertion. That's one 

of the problems for people stuck in bliz-

zards. They tend to use up all of their 

reserves struggling through the snow, and 

then lie down to rest. When they quit 

moving, they quit pumping new chemicals 

to their depleted muscles fast enough. The 

cold and lack of energy may be fatal.) The 

analogy is not perfect, but it's pretty good. 

This double windlass system allows the 

energy of the main motor to be shared by 

many functions in the body of the robot. 

The average load on the motor can be quite 

low, while large amounts of energy are 

rapidly available wherever needed. When 

separate motors are used at all places 

where energy is needed, those motors 

must be big enough to supply all the 

energy that will ever be needed from them. 

That means a lot of extra weight is being 

dragged around all the time just in case a 

burst of energy is needed. The double 

windlass system solves much of this 

problem with a comparatively simple 

simulation of the system Nature has been 

using effectively for a long time. 

I 'm not complaining about standard 

mechanical systems. There's much to be 

said for the clever designs that competent 

engineers have developed for robotic and 

non-robotic mobile systems using modem 

technology. However, cheapness is not a 

feature of standard mechanical systems, 

and the average home craftsman simply 

can't cope with them. 

The double windlass system can be 

assembled by the home experimenter with 

Tinkertoys or an Erector Set. The interest-

ed roboticist can work with this system 

himself even before the next article 

in this series on more mechanics of robot-

building is published next month. 

The pulleys can be empty thread 

spools in the experimental system. When 

you get around to building a rig that's 

meant to last, you'll want to use metal, 

because there's a lot of wear. Don't the 

cords stretch? Sure, and they'll have to be 

tightened once in a while. So what? At 

least you can figure out what's wrong and 

fix it yourself. (And there will be many 

maddening problems inherent in this 

system as in any other.) By machinists 

standards, the whole mechanism can be 

quite sloppy and still work. Precision can 

be achieved in a sloppy system without 

accuracy. 

In the discussions leading up to this 

article someone asked: "Isn't there a real 

safety factor in the fact that the cords will 

slip on the pulleys if they are overloaded?" 

"Oh, no. The cords will break before 

they slip. This is the kind of mechanism 

people use to pull two or three miles of oil 

drill stem up out of wells. The windlass is a 

powerful tool. Why do you ask?" 

"Well, I guess I don't want the robot 

to be too strong." 

continued 
Seven 

Figure 13 (various sizes of pulleys on 

the shaft) 

All the pulleys may be of different 

sizes on this same shaft so that Lever B1 

may be moved with a different amount of 

power from that applied to B2 and so on. 

Maybe you don't want the robot to wag its 

tail with enough force and speed to smash 

a chair leg. You can control the speed and 

power of the way by choosing levers of 

appropriate length and pulleys of appro-

priate diameter. 

V V 
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One of the most interesting and 

rewarding areas of the persona! computer 

hobby is that of designing and building 

custom interfaces. Aside from the sheer 

pleasure and satisfaction that comes with 

seeing your new design work, there is the 

possibility of interfacing something that 

has never been interfaced as well as the 

benefit of substantial money savings as 

compared to the purchase of a commercial 

kit or finished product. 

This article deals specifically with 

interfacing to the Altair 8800 series of 

CAREFUL BULL 

!N THE C H ! N A S H O P 
cont inued 

"Too strong for what?" 

"For people. I don't want it to hurt 

anybody by accident, and I though maybe 

the cords would s!ip in case the machine 

happened to be gripping somebody too 

hard." 

"Ah. Well, you'll have to take care of 

that in the machine's logic. I suppose you 

could build in a sensing circuit that makes 

it turn off when it hears a scream." 

"That isn't the comfort I was looking 

for." 

"Sorry. A machine is a machine. 

Build it the way you want to build it. 

Maybe it can leam to be careful." 

I haven't discussed the logic, brain, or 

reflexes of a robot in this article, though 

some of those matters will be touched upon 

later in the series. Instead, I've offered a 

cheap and dirty approach to making robots 

do something interesting. If you have been 

stewing in frustration over your inability -

financial or mental -- to build a working 

system to go with the brains on your shelf, 

get busy with the spools and Erector Set 

motor-:. 

computers and applies equally to all three 

models (8800, 8800A, and 8800B). The 

6rst step toward successfully interfacing 

any computer is a thorough understanding 

of the bus. The Altair Bus is a 100 line 

printed circuit board bus, in which all like 

numbered connector pins connect to one 

another via etched copper lines. This 

structure allows any interface, CPU or 

memory printed circuit board to be inserted 

into any vacant connector slot. The 8800A 

and 8800B come equipped with an 18-slot 

bus (mother board), while the 8800 is 

provided with a 4-slot bus with space 

provided for 3 additional 4-slot mother 

boards. 

Each of the 100 lines on the Altair Bus 

has a predefined function which must be 

fully understood in order to make good use 

of the bus. 

Table 1 contains a complete break-

down of all the Altair Bus signals, given in 

functional logic notation. This means that 

in each signal mnemonic there are two 

parts. The first is the signal abbreviation 

and the second is the active level represen-

tation. The two parts are separated by a 

hyphen for clarity. The active level repre-

sentation is in the form of an upper case H 

for active high and an upper case L for 

active low. Functional representation does 

not apply to power and ground lines. To 

correlate the functional logic shown here to 

the "positive logic" symbology shown in 

the Altair documentation, drop the active 

level representation and draw a Boolean 

NOT sign over the tops of these signals 

shown here as L. The functional notation is 

a far better approach because it reserves 

the use of the Boolean NOT symbol for use 

when NOT is intended. Positive logic nota-

tion on the other hand, uses the NOT 

symbol every time an active low is indi-

cated, so that every time the logical NOT 

function is desired, it will be confused with 

active low. 

Let's take a look at the major groups of 

signals on the bus. The address lines are 

outputs from the CPU board and are inputs 

on all memory and I/O boards. The I/O 

boards use only the lower 8 bits (A0-H 

through A7-H) because during I /O trans-

fers, the upper 8 bits are identical to the 

lower 8 bits. In the event that direct 

memory access (DMA) is used, the DMA 

controller must also generate an address 

on the address lines. In the 8800 and 

8800A, these lines (through current limit-

ing resistors) provide the drive for the 

Address indicators on the front panel. This 

seriously limits the high going drive of the 

8T97 drivers on the CPU board and there-

fore it is suggested that each board receive 

the address lines using only one low power 

TTL or low power Schottky TTL device. In 

the event that a DMA controller is being 

designed, it is recommended that address 

drivers equivalent to the 8T97s on the CPU 

board be used. 

The data-out lines are outputs from 

the CPU board and are inputs on all 

memory and I/O boards. In the event that 

DMA is used, the DMA controller must 

also drive the data-out lines when the 

direction of the data transfer is to the 

memory from the DMA controller. Assum-

ing no more than the 18 cards that will St 

in the cabinet are connected to the bus, up 

to 2 milliamps of low loading may occur on 

each board in the bus. This equates to one 

standard or Schottky load, 5 low power 

Schottky loads, or 10 low power TTL loads. 

A DMA controller should drive these lines 

with 8T97 Tri-state buffers or equivalent. 

The data-in lines are inputs to the CPU 

board and are driven from the memories 

and I/O boards. In the event that DMA is 

used, the DMA controller is an additional 

input for the data-in lines. Also, the front 

panel is an input for these lines. Since the 

front panel and CPU both use 74LS04 

receivers for the data-in lines and the lines 

are "pulled-up" using lk Ohm resistors at 

the CPU board, almost any Tri-state or 

open collector TTL driver may be used to 

drive the data-in lines from the memory 

and I/O boards. However, to insure 

optimum noise immunity and capacitive 

drive over the length of bus, it is recom-

mended that the 8T97 type buffers be used 

to drive the data-in lines. 

The status lines are sent out to the bus 

from the CPU board (and from the DMA 

controller is installed). The status lines 

consist of 8 lines which are selectively used 

by the memories and I/O boards to obtain 

information about the nature of the cycle. 

Those lines are also displayed on the front 

panel. The status lines are electrically of 

the same nature as the address lines, 

which means that they should be loaded by 

only one low power TTL or one low power 
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Schottky TTL load pet board. A DMA 

controller must be capable of generating 

these signals during a DMA transfer. 

These lines are SINTA-H, SWO-L, 

SSTACK-H, SHLTA-H, SOUT H, SM1-H, 

SINP-H, and SMEMR-H. 

The processor lines are a buffered 

group of inputs and outputs which are 

derivatives of the Intel 8080 processor 

signals. The 6 processor output lines are 

PSYNC-H, PDBIN-H, PWAIT-H, PWR-L, 

PHLDA-H, and PINTE-H. The DMA 

controller has control of these lines during 

a DMA transfer. The 5 input lines are 

PRDY-H, XRDY-H, PHOLD-L, PINT-L, 

and PRESET-L. Since some of the output 

signals in this group are used to drive front 

panel indicators, the input loading should 

not exceed one low power TTL or one low 

power Schottky TTL load per board. The 

input signals are all "pulled-up" using lk 

Ohm resistors so that they may be driven 

by any Tri-state or open collector TTL gate 

or buffer. Although many kits (and the 

Altair manual itself) advocate the use of 

the PRDY-H line for inducing "wait" 

states, a much better and electrically 

correct) way of doing this is to use the 

XRDY-H line. The front panel drives 

PRDY-H with a constantly enabled 8T97 

which has substantial haigh going drive 

capability. To pull this line down while the 

front panel is pulling it high causes large 

instantaneous surge currents in the 

devices, causing unnecessary noise spikes 

as well as abuse to the devices themselves. 

The disable group of lines is used to 

disable the various Tri-state drivers on the 

CPU board when a DMA cycle occurs. The 

DMA controller then becomes responsible 

for driving the disabled lines. There are 4 

disable signals which are used with DMA. 

They are STADSB-L, C/CDSB-L, ADDDSB 

-L, and DODSB-L. A fifth disable signal is 

SSWDSB-L, which has nothing to do with 

DMA, but instead is used to gate in the 

sense switches when an IN 377 (octal) 

instruction occurs. 

The heart of the Altair 8800 system is 

the CPU board. A block diagram of this 

board is shown in Fig. 1. This block 

diagram is provided to give an overview of 

the CPU connections to the bus. All refer-

ences of in and out in the Altair system are 

with respect to the CPU board. The 

bidirectional data lines of the 8080 micro-

processor are split into data-in and data-

out lines for use on the Altair bus. The 

contents of the bidirectional data lines are 

latched into the 8212 latch at SYNC time by 

the 01 signal. The outputs of the 8212 

latch are buffered for system use by 8T97 

Tri-state buffers. The processor output 

signals are also buffered using 8T97s and 

F/y. 7. CPU g/oc/r D/agram. 

presented to the bus. The processor input 

signals are also buffered using 8T97s and 

presented to the bus. The processor input 

signals are passed through receivers and 

then presented to the 8080 chip. The ready 

signals (PRDY-H and XRDY-H) are 

ANDed, synchronized with 02, sent to the 

8080. PHOLD-L is also synchronized with 

02 before being sent to the 8080. The CPU 

block diagram should also be of value in 

the event that troubleshooting the CPU 

becomes necessary. 

Fig. 2 is a block diagram of a typical 

4K byte static memory as implemented for 

the Altair bus. In the static memory board, 

the control is relatively simple, with the 

major effort in the area of address decod-

ing and control signal generation. Fig. 3 

shows how this might be accomplished. 

The methods chosen for simplicity and are 

based on readily available, inexpensive 

components. SI through S4 are address 

selection switches, which determine the 

position in the address range the board will 

occupy. These switches are normally of the 

DIP-SWITCH type, but may be replaced by 

jumpers for economy. BOARDSEL-L will 

be active (low) is all 4 switches match the 

state of the respective address lines asso-

ciated with the switches. BOARDSEL-L 

has several functions, which include 

enabling the CHIPSEL decoder which is a 

7442 decoder, providing an enabling input 

to both the READ-L and WRITE-L gates 

and finally in allowing the PROTECT flip-

flop (not shown) to be changed by either 

the PROT-L or UNPROT-L signals. The 

CHIPSEL decoder is connected so as to 

provide one of four chip selects according 

to the state of A10-H and All-H. Either 

READ-L or WRITE-L is produced during a 

memory cycle based on the state of 

SMEMR-H, PDBIN-H, and MWRT-H lines 

at the time BOARDSEL-L is low. WRITE-L 

is used as a memory write pulse and is fed 

to pin 3 of all the 2102 chips on the board 

during a memory write cycle. Only those 

2102s selected by an active (low) CHIPSEL 

signal will be written into. READ-L is used 

to enable the DATA BUS DRIVER which is 

composed of 8T97 buffers feeding the data-

in lines. There are many ways to accom-

plish the address decoding other than as 

shown. Among these are the use of 

address comparator chips to produce 

BOARDSEL-L. 

Keep in mind that the purpose of 

discussing the memory, CPU, and I/O 

interfaces is to give an insight into the 

Altair bus considerations for the boards, 

not to provide complete design details. 

With the information provided, it is hoped 

that you will be able to pick up the ball and 

make your own designs work. Also, many 

genera! designs shown in other articles 

may be adapted for your Altair, using the 

techniques in this article. 

By far, the largest area open to 

hardware experimentation in the personal 

computer system is that of I/O interfacing. 

If you are started to design an I/O interface 

from scratch, the first order of business is 

the conceptual design. This first involved 

deciding what function the interface board 

wil! perform. Once the function has been 

deSned, it must then be decided how the 

interface will look to your software. This is 

cont inued 
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# 
7 

4 

5 

6 
7 

8 
9 

10 
11 

12-17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

Mnemonic Description 
+ 8 Vo!ts Unregulated power supply for 

use by +5 Volt on-board reg-

ulators. 

+16 Volts Unregulated power supply tor 

use by ort-board regulators 

{typically to obtain +12 Volts). 

XRDY-H A normally high iine, which if 

brought to the low state will 

cause the CPU to enter the 

WAIT state. 

VIO-W Vectored Interrupt priority 0 

VI1-H Vectored Interrupt priority 1 

VI2-H Vectored Interrupt priority 2 

Vt3-H Vectored Interrupt priority 3 

V)4-H Vectored Interrupt priority 4 

VI5-H Vectored Interrupt priority 5 

V)6-H Vectored interrupt priority 6 

VI7-H Vectored Interrupt priority 7 

Not Used 

STADSB-L Causes the 8 status tine buffers 

on the CPU board to be In-

stated (enter the high imped-

ance state). 

C/CDSB-L Causes the 6 command/control 

line buffers on the CPU board 

to be Tri-stated tenter the 

high impedance state). 

UNPROT-H A signal which is ANDed with 

"board select" on a memory 

board to cause the PROTECT 

flip-flop to be cleared. 

SS-H Indicates a single-step is 

occurring in the CPU. 

ADDDSB-L Causes the 16 address line 

buffers on the CPU board to 

be Tri-stated (enter the high 

impedance state}. 

DODSB-L Causes the 8 data-out lines on 

the CPU board to be Tri-stated 

(enter the high impedance state). 

02-H Buffered TTL compatible version 

of CPU phase 2 clock. 

01 -H Buffered TTL compatible version 

of CPU phase 1 clock. 

PHLDA-H "Hold Acknowledge" which is the 

CPU board response to the HOLD-H 

input signal. 

PWAIT-H CPU signal indicating a WAtT 

state is occurring. 

P!NTE-H CPU signal indicating that tn-

terrupts are Enabled. 

A5-H Address Bit 5 

A4-H Address Bit 4 

A3-H Address Bit 3 

A15-H AddressBitlS 

A12-H Address Bit 12 

A9-H Address Bit 9 

D01-H Data Out (from CPU) Bit 1 

DOO-H Data Out (from CPU) Bit 0 

A10-H Address Bit 10 

D04-H Data Out (from CPU) Bit 4 

39 D05-H Data Out (from CPU) Bit 5 

40 D06-H Data Out (from CPU) Bit 6 

41 D12-H Data in (to CPU) Bit 2 

42 D13-H Data In (to CPU) Bit 3 

43 D17-H Data In (to CPU) Bit 7 

44 SM1-H CPU status signal indicating 

processor is in machine cycle 

1 which is Instruction Fetch. 

45 SOUT-H CPU status signal indicating 

the current cycle is an Out-

put cycle. 

46 StNP-H CPU status signal indicating 

the current cycle is an In-

put cycle. 

47 SMEMR-H CPU status signal indicating 

the current cycle is a Memory 

Read cycle. 

48 SHLTA-H CPU status signal indicating 

the CPU is Halted. 

49 CLOC-L A buffered 2 MHz clock for 

general use. 

50 GND System ground 

51 +8 Volts (Same as pin 1) 

52 -16 Volts Unregulated negative power 

supply for use by on board 

regulators (typically to 

obtain -5 Volts or -12 

Volts). 

53 SSWOSB-L "Sense Switch Disabfe" which 

is used during an IN 377 

instruction to disable the dat3 

input buffers on the CPU board 

so that the sense switches can 

be "read" by the CPU. 

54 EXTCLR-L I/O clear signal generated 

by front panel. 

55-67 Not Used 

68 MWRT-H CPU signal indicating that the 

data on the data-out bus is to 

be written into the memory se-

lected by the address !ines. 

69 PS-L "Protect Status" qf the select-

ed memory. 

70 PROT-H A signal which is ANDcd with 

"board select" on a memory 

board to cause the PROTECT 

flip-flop to be set. 

71 RUN-H Front panel signal indicating 

that the CPU has been *'to)d" 

toRUN. 

72 PRDY-H A normally high tine which if 

brought to the tow statte wii! 

cause the CPU to enter the WAIT 

state. Note:This line :s 

driven by a continuously enabled 

Tri-state driver on the front 

panel board and contrary to what 

others may be doing, this line 

should not be used for any other 

purpose. The proper !ine to use 

for entering wait states by 

the area in which most of the design trade-

offs take place. This is to way, for 

example, if the interface is to be extremely 

easy to control from the program, then the 

hardware complexity will likely increase. 

Conversely, min imal hardware complexity 

usually results in more difficult program-

ming. This is the real beauty of designing 

your own interfaces . . . you make the 

Table 1. The Altair Bus 

design trade-offs to suit your own needs 

and tastes. 

Many times it is helpful to jot down 

notes on the way your prospective interface 

will appear to the software and then make a 

trial subroutine using the scheme you have 

decided upon. I f the results of your test 

subroutine are not pleasing to you, then 

rehash the conceptual design and try 

again. In this way, you will have a good 

feel for the way your interface will function 

before it is built . It will also become 

apparent as to which way the trade-offs 

must be moved before trying again. 

Three major operating modes for I / O 

interfaces are Bug testing, program Inter-

rupt, and D M A (direct memory access). 

The most frequently used and easiest to 
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73 PtNT-L 

74 

75 

76 

77 

78 

79 

80 
81 
82 
83 

84 

85 

86 
87 

88 
89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 
100 

PHOLD-L 

PRESET-L 

PSYNC-H 

PWR-L 

PDBtN-L 

AO-H 

A1-H 

A2-H 

A6-H 

A7-H 

A8-H 

A13-H 

A14-H 

A11-H 

D02-H 

D03-H 

D07-H 

D)4-H 

Di5-H 

D)6-H 

D!1-H 

D)0-H 

StNTA-H 

SWO-L 

SSTACK-H 

POC-L 

GND 

"stow" memories and I /O devices 

is XRDY-H (Pin 3). 

"tnterrupt Request". tnter-

rupts have been enab!ed, a tow 

tevet on this tine causes the 

CPU to enter the interrupt ec-

knowtedge condition at the con-

clusion of the current instruc-

tion. 

An input signal to the CPU 

which causes a HOLD state to 

occur. PHOL.D is the requesting 

signal f o r a D M A transfer. 

Asystem reset signs! used 

primarily by the CPU board. 

(I/O boards normally use the 

EXTCLR-L signal for resetting). 

A buffered CPU signal which in-

dicates the beginning of a new 

machine cycle. This signs! is 

used on the CPU bawd to enable 

the loading of the system st3tus 

latch. 

"Processor Write" which indicates 

that the data on the data-out 

bus is to be written either to a 

memory Or an t/O device. 

"Processor Data Bus tn" is used 

to indicate to the seSected 

memory or I/O device that the 

CPU expects data on the data-in 

bus. 

Address Bi tO 

Address Bit 1 

Address B i t 2 

Address B i t 6 

Address B i t7 

Address B i t 8 

Address Bit 13 

Address Bit 14 

Address B i t l l 

Data Out (from CPU) Bit 2 

Data Out (from CPU) Bit 3 

Data Out (from CPU) Bit 7 

Data tn (to CPU) Bit 4 

Data tn (to CPU) Bit 5 

Data tn (to CPU) Bit 6 

D a t a t n ( t o C P U ) B i t 1 

Data tn (to CPU) Bit 0 

tnterrupt Acknowtedge signal 

f romCPU. 

CPU status signat indicating 

that the current cycte invotves 

writing to a memory or t/O 

device. 

CPU status signal indicating 

that the address bus contains 

the stack address and that a 

stack operation will occur on 

the current cycle. 

Power On Clear reset signal 

System ground 

Table 1 (continued) 

implement) is the Hag testing method. 

During the conceptuai design, a particular 

bit is designated to indicate a particular 

meaning such as device busy, device 

ready, device error, etc. The meanings 

such bits may assume is limited only by 

your imagination. Normally, these bits are 

read by the program from an I /O port 

reffered to as the status register. Also, the 

f/<y. 2. 4/f Sfaf/c Memory B/ocAr D/ayram. 

A I S - H > 

A I 2 - H ) 

SMEMR-H) 
POBIM-H) 

MWRT-H) 

80ARDSEL-L 

74LS04 
O-H ) 

Ay. 3. Oecot&ny and Confro/ S/<yna/ Generaf/on. 

status register is usually the lowest port 

number associated with a device. An 

example might be a paper tape reader in 

which the status register is port 6. The 

data register would then be port 7. Bit 7 

would be a good selection to indicate data 

ready in the status register. The software 

would then consist of a ready loop shown in 

Example 1. This type of I/O software is 

referred to as flag testing. Most devices 

are readily controlled in this manner. The 

primary shortcoming of the flag testing 

method is that the computer spends most 

of its time in the read loop, waiting for the 

next data to become ready. In most 

personal computing situations this waiting 

cont inued 
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7 4 L S 0 4 IMPENAB-L 

SINTA-W 

tNTEHRUPT 

CONOmON-t-

! — t „ *o-! 
7 4 L S 0 4 L 

7-H > ^ ^ 

iDATA! 

OOOMCTAL ! 

OOHOCTAt . ) 

HMt 

SBS 

KMT 

EPE 

Cu l l [OUT 

wi.s: 
iOUT) BIT 

DATA 

S T A T U S / S E T 

G E T / P U T 

A'g. 4. /nterropt Log/c. Ag. 5. Port //O Oecod/ng. 

LOOP; IN 6 GET STATUS 
RAL POSITION READY BIT IN CARRY 
JNC LOOP TRY AGAIN IF NOT READY 
IN 7 GET THE DATA 
MOVM.A STORE THE DATA 
. . . E T C 

fxamp/e7. 

is not a problem. If more than one process 

must occur simultaneously, it is possible to 

use program interrupt or DMA to free the 

processor for other processing while the 

I/O devices function more independently. 

In the case of program interrupt, the ready 

bit would be used to pull down the inter-

rupt request line (PINT-L). The processor 

would them respond (if interrupts were 

enabled) with SINTA-H. The I/O interface 

would then use SINTA-H to gate an inter-

rupt instrution onto the bus (see Fig. 4). 

The interrupt instruction is usually a 

restart (RST) instruction which would save 

the program counter on the stack and then 

vector to the I/O subroutine. The I/O 

subroutine would then process the data 

and execute a RET (return) instruction. 

The DMA type of operation will be dis-

cussed separately. 

Another major decision to be made 

during conceptual design is whether 

standard I/O (port I/O) or memory mapped 

I/O addressing will be used. Each of these 

methods have advantages and disadvan-

tages which must be weighed in your own 

mind. Port I/O has the advantage of 

having less address lines to decode (8) as 

well as leaving all 65K of the address space 

available for memory. It has the advantage 

of being limited to only two types of 

instructions in transferring data to and 

from the I/O device (IN, OUT). Memory-

mapped I /O is a method in which the I/O 

device is treated as if it were a memory 

location ot group of memory locations. 

Memory mapped I/O has the advantage of 

being able to use any of the transfer 

instructions that are used with real 

memory, including arithmetic and logical 

as well as move instructions. The disad-

vantages are the need to decode more 

address bits (16) and the fact that part of 

memory address spectrum is consumed for 

I/O use. An example of port I/O address 

decoding is shown in Fig. 5. An example of 

memory mapped I/O is given in Fig. 6. A 

bit chart with addresses is provided in each 

of these figures. Each is set up to perform 

an identical function so that you may 

compare the complexity of one to another. 

The next step in the design of the I/O 

interface is the design implementation. 

This is the part which is referred to by 

many people simply as the design stage. 

This is the actual drawing of the logic 

diagram in such a way to satisfy the 

requirements of the bus (referred to as bus 

overhead). To aid you in this area a typical 

I/O interface block diagram is provided in 

Fig. 7. Also virtually every I/O interface 

requires the sending of data to the CPU 

board. A means of performing this function 

is shown in Fig. 8. Fig.8 depicts a method 

in which data and status are multiplexed 

into the data buffers. Other methods of 

accomplishing this include separate 8T97s 

for the data and the status; thus, eliminat-

ing the 74157 multiplexers. 

When designing an interface which 

makes use of large scale integration (LSI) 

components, the control register, status 

register, and device logic are all built in 

to a special purpose chip. Examples of this 

type of chip include the UART, PIA, ACIA, 

Programmable Peripheral Interface, etc. 

These chips are very useful because they 

were designed for microprocessor (or 

minicomputer) interfacing ease and pack-

age count efficiency. When using these 

devices, the specifications and application 

notes should be studied carefully, espe-

cially in the areas of operating modes, 

software considerations and performance. 

In the specification sheets, beware of using 

the typical values. Instead, use the 

minimum and maximum values as appro-
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priate. This will help to assure glitch-free 
operation of your finished interface, Since 
most of these LSI components are MOS 
(Metal oxide semiconductor) chips, careM 
attention must be paid to output signal 
bading and timing specifications. Almost 
without exception, these devices can drive 
on!y one TTL load and should therefore be 
buffered. The 8080 MOS/LSI microproces-
sor chip itseif is a good example of this 
fact. Notice that all output lines of the 8080 
are buffered on the CPU board. Also most 
of these devices must be fed relatively wide 
timing pulses. In addition, some MOS/LSI 
devices are dynamic in nature and thus 
require a constant clock of some minimum 
frequency. These requirements are all 
relatively easy to meet, but overlooking 
them will, in most cases, cause disappoint-
ment in the performance of your interface. 
While these devices are more difficult to 
use than standard TTL integrated circuits 
on a chip for chip basis, the large number 
of chips and the printed circuit space they 
replace make them very worthwhile addi-
tions to an interface design. Also, these 
devices use far less power than the group 
of TTL chips they replace. As in the 
handling of all MOS components, care 
must be taken in the handling of these 
devices as they are subject to damage from 
static charges. 

Since the control register and status 
register are usually incorporated internally 
in the LSI components, the conceptual 
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design must conform to the available 
control and status bits provided. In some 
cases, it is possible to augment the control/ 
status of the LSI chip being used by provid-
ing additional external flag bits or status 
bits. An example of this would be an 
interrupt enabled control bit external to a 
1402 UART (which has no such function 
internally). It is also possible in some 
cases to combine outputs (by using exter-
nal gating) in such a way as to make the 
signals more useful to your unique applica-
tion. In other cases, it is possible to ignore 
certain outputs if they are not suited to 
your needs. On the unused input signals, 
it is usually necessary to tie the pin high or 
low or to another driven input. Carefully 
review the specifications of the device for 
clues as to the handling of unused inputs. 
It is easy to be intimidated by the maze of 
data and buzz words contained in many 
manufacturers' data sheets. Keep in mind 
that reading these sheets does not require 
a degree in engineering and that the 
people preparing the data sheet want you 
to understand it. Also, remember that data 

sheets do sometimes contain errors, so if 
in doubt, check with the manufacturer or 
his representative (usually given on the 
back of the data sheet) or check on the data 
from a different vendor if the part is second 
sourced. 

As mentioned earlier, it is possible to 
free the processor of much of the work 
involved in I/O programming by using 
direct memory access (DMA). Fig. 9 
shows the block diagram of a DMA control-
ler. The basic operation of the controller 
involves setting the DMA address register 
to the desired number of bytes to be trans-
ferred and then allowing the DMA control-
ler (independent of the CPU) to transfer an 
entire block of data to (or from) the device 
from (or to) the main memory. When each 
byte is transferred, the byte counter is 
decremented while the address counter is 
incremented. When the byte counter 
reaches a count of zero, the DMA operation 
is complete. The DMA transfer consists of 
a number of a DMA bus cycles which is 
equal to the number of bytes specified 

continued 
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cont inued 

when setting the byte counter. Each DMA 

cycle is initiated by the device requesting 

service, which results in HOLD-L being 

driven low (active). This is then recognized 

by the CPU board which sychronizes 

HOLD-L and eventually suspends program 

activity and responds with HLDA-L. When 

the DMA controller receives HLDA-L, the 

disable signals STADSB-L C/C DSB-L, 

ADDDSB-L, and DODSB-L are all brought 

low which removes virtually all CPU 

influence from the bus. The DMA con-

troller then drives the disabled signals in 

such a way as to make the other boards in 

the system (especially the memory boards) 

think that the CPU is talking to them. The 

direction of th^ data transfer, the memory 

address, and all other control functions are 

determined by the way these lines are 

driven. 

Among the advantages to be gained 

by using the DMA facility are transfer 

rates which greatly exceed the maximum 

programmed data rate (I/O under CPU 

control). The number of integrated circuits 

required to implement DMA is rather 

large, which tends to discourage its use in 

all but the most demanding situations. In 

most cases, due to the large number of 

components involved, the divice logic and 

the DMA logic are contained on separate 

boards and are interconnected externally 

from the bus to one another by means of 

jumper straps. 

While not one of the more glamorous 

apsects of computer interfacing, the need 

for proper power distribution remains ever 

present. The majority of the logic used in 

the Altair system requires the use of 5 volts 

which must be regulated to within 5% of 

nominal. The bus supplies unregulated 

positive voltage on pins 1 and 51 at 

approximately 8 volts. Each board then 

regulates this down to 5 bolts for use on 

that board. The easiest way to accomplish 

this regulation is through the use of one 

of the 3-pin regulators which are available 

in several ratings and shapes. The two 

most common types are the 7805 and 

LM309 regulators. Most commonly, the 

7805 comes in the T0-220 package while 

the LM309 Uses the TO-3 package. Either 

type requires the use of an adequate heat 

sink as well as input and output filtering. 

Both types are nominally rated at 1.0 

Amps. For current requirements in excess 

of 1.0 Amps, multiple regulators may be 

used, or heavier duty types may be used, 

such as the LM323 which is rated at 3.0 
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Amps. Also, it is important to bypass the 

regulated 5 volt line to ground at regular 

intervals using .01 uF ceramic capacitors. 

A good rule of thumb if one .01 uF capaci-

tor for each six integrated circuits. Also, 

follow the manufacturer's guidelines for 

any special layout requirements. This is 

especially important in the area of analog 

interfacing. Don't overlook the importance 

of good grounding tec^nifji- s when 

constructing your interface as deficiencies 

in this area sometimes show up as ghosts 

(erratic operation) and rarely can be found 

by logical means. 

Interfacing is a key ingredient in 

making your computer perform useful 

functions as well as an interesting part of 

personal computing. Becoming skilled in 

the art and science of interfacing will pay 

many dividends in the enjoyment of this 

most interesting hobby. 
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Students Devetop 
!C Logic Test Ctip for Attair 6 8 0 b 

By James Gupton 

7416-G Pebblestone Drive 

Charlotte, N.C. 28212 

Gupton is a free-lance writer and am 

electronics teacher at the Umon County 

Career Center in North Caroiina. This is 

the second in a two part series of articies on 

his students' experiences with an Aitair 

680b computer. (For Part I see "Students 

Find Aitair 680b Kit Easy to Assemble," 

COMPUTER NOTES, May 1977, pp. 12-

14.) 

In Phase II of the Altair 680b kit 

assembly, my students developed an IC 

logic test clip for the final electrical check-

out and error detection before applying 

power to the system. 

First, they carefully examined each 

subassembly of the 680b kit—the power 

supply, the front panel and the main board. 

The assembly checkout revealed two 

microscopic solder bridges on the main 

printed circuit board. Apparently, the low-

temperature soldering irons have a tenden-

cy to lift hairline threads of solder when 

removed from the soldering point. The 

remaining checkout showed professional 

workmanship and was a credit to the 

students. 

Although two defective SPDT front 

panel switches had to be replaced, stu-

dents went ahead with the next step and 

checked the circuit voltage and logic state 

on the front panel and main board. The 

power supply and voltage regulating 

circuits were fine. Front panel LED's 

turned on as switches were flipped from 

zero condition to one condition. Everything 

seemed to function according to the 

assembly manual. But students still 

wondered if they had the proper logic 

conditions on the logic-integrated circuits. 

Have you ever tried to juggle a schematic 

diagram, position and hold a printed circuit 

board, handle two snake-like meter probes, 

keep one eye on the meter and keep a 

wandering test probe on a specific pin of an 

IC -- all at the same time? It's difficult for 

even expert computer technicians, so my 

students had a number of problems. What 

they needed was an inexpensive "student-

proof' device which would tell the logic 

state and the input voltage of an IC without 

a meter. 

AP Products, Inc., Painesville, Ohio 

and Radio Shack National Headquarters, 

Fort Worth, Texas donated 14-pin and 

16-pin IC test clips. Radio Shack also 

donated subminiature LED's and an ample 

supply of one-quarter watt resistors. 

Students only had to come up with the idea 

and assembly time for an IC logic test clip. 

Of course, nothing always goes as 

planned. Although we received the IC 

test clips and resistors, the LED shipment 

was delayed, and we received only some of 

them before school closed for the summer. 

However, students did complete the 14-pin 

IC test clip, and with the exception of the 

LED's they also wired the 16-pin logic 

tester. 

Students felt that the schematic 

drawing and assembly illustration included 

with this article would help other Altair 

680b owners who want to construct a 

similar logic IC test clip. 

Unfortunately, the school year ended 

before students could begin writing 

programs. But that will be one of the first 

projects for the next school term. Hope-

fully, we will then be able to get a keyboard 

interface and a cassette tape interface to 

really make our Altair 680b hum 

er.. .compute! 

D = LED (RadioShack 276-042) 

R = 150 O H M '4Watt Resistor 

TC= !C TEST CUP (RadioShack 276-1950 14pin 
-1951 16pin 
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What ' s a M ic rocompu te r C!ass 

w i t hou t an Aitair 8 8 0 0 b ? 
By Linda Block! 

Two trade schools in Albuquerque 

recently began offering microcomputer 

courses using Altair 8800b computers as 

teaching aids. 

Throughout the year, North American 

Technical Institute (NATI), which teaches 

only electronics and math, offers "Micro-

computer Circuitry (361)," and Albuquer-

que Technical Vocational Institute (TVI) 

offers "Digital Circuits IV" to students 

with a basic knowledge of electronics. The 

courses are part of each school's Associate 

of Science degree in Electronic Engi-

neering Technology. 

Both schools use their Altair 8800b 

with 5K bytes of memory to teach students 

how to run the system, program in machine 

language, and interface with various 

1/0 devices. Assembly is not covered in 

either class. However, each class empha-

sizes different aspects of microcomputing. 

NATI Director Roy Stone said his school's 

main goal is employment security. "So 

whatever we teach is designed to help 

students get a job as an engineer or 

technician in the computing field," he 

said. "We're very responsive to students' 

needs." 

NATI instructor Dennis Crunkilton 

said since the school is primarily hardware-

oriented, theory, design, and troubleshoot-

ing make up the majority of the course. 

"Students are taught only a minimum of 

programming which will allow them to 

understand the hardware workings of the 

8800b," he explained. NATI does offer a 

separate course on "8080 Machine 

Language" and is also planning more 

software classes (BASIC and Fortran) in 

the near future. Stone said those classes 

will begin as soon as the school orders 

several more Altair computers with 32K 

bytes of memory and five more terminals. 

"Although we'll offer both BASIC and 

Fortran, we really prefer Fortran because 

so many of our graduating students work 

with scientists," he added. 

Crunkilton said the decision to use an 

Altair 8800b for the class was due, in part, 

to the new Altair Timesharing BASIC. He 

said its cost-effectiveness really sold him 

on Altair microcomputers. "With mini-

computers, you'd have to buy many 

terminals. A few years ago, I would have 

laughed if anyone had even suggested a 

timesharing system could be set up with 

microcomputers." But now, by using 

functioning with TV! instructor, Ceoi) Lennox. 

Altair-compatible options, Crunkilton said 

the capabilities of Altair microcomputers 

can be expanded to that of minicomputers. 

"So I can teach students about minicom-

puters on our Altair 8800b. This is just one 

of the advantages microcomputers have 

over minicomputers," he said. 

TVI instructor Cecil Lennox said in 

addition to working with the Altair 8800b, 

his students study the circuitry on an 8080-

based microprocessor with 256K bytes of 

memory and also work with a PDP/11 

minicomputer. Troubleshooting is not 

covered in the class. 

Lennox said TVI plans to expand the 

course to a full-time digital program that 

includes troubleshooting and programming 

in BASIC, machine language, Fortran, and 

Cobol. He said in the fall TVI will bid on 

three new systems with 8K and 16K bytes 

of memory and video terminals to use in 

these classes. 

A 15-week night class aimed at people 

in the electronics/minicomputer industry 

will also be offered at TVI this fall, he said. 

"Students will develop their own plans for 

a microprocessor and then build a micro-

computer with IK bytes of memory," he 

explained. "The class will also include 

troubleshooting. It will be good hands-on 

experience," he said. 

The two instructors and Stone said 
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Beginning in October, Lennox will also 
teach an eight-week microcomputer course 
at MITS. Geared for people with a non-
technical background, the main goal of the 
course is to provide an overall picture of an 
integrated computer system, including the 
fundamental anatomy of a computer, the 
mainframe, peripherals, system hook-up, 
and software. 

capable students with electronics exper-

ience don't have any problem finding a job 

just about anywhere in the country. "Most 

students are working even before they 

graduate," said Stone. "Because so few 

schools in the U.S. teach our in-depth level 

of electronics, there's a great demand for 

industrial instructors, field engineers, and 

technicians." Stone said this demand 

can't be met by private industries or public 

universities. "Neither can offer the 

necessary in-depth approach to electronics. 

Universities don't set up such a program 

because they need to turn out well-rounded 

students," he explained. One solution 

Stone suggested is that industries encour-

age employees to attend electronics 

schools and pay for their tuition. 

With the current rapid expansion of 

the electronics Held, even instructors must 

keep up-to-date with the many new 

changes. This sometimes means going 

back to school. In order to learn more 

about microcomputers for his "Digital 

Circuits IV" class, Cecil Lennox spent 

many half-days at MITS this summer 

studying the Altair 8800b schematics and 

circuitry and various 1/0 devices. Lennox 

said learning about 1/0 devices was more 

difficult and required a great amount of 

concentration. But he said 1/0 devices are 

an important part of his class at TVI. ' 'The 

industry is particularly demanding people 

who have training in 1/0 devices to control 

industrial processes," he said. 

CN/September, 1977 
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NAT) Director. Roy Stone, says electronics students have little trouble finding jobs after 
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Programmabte t/O 

M a d e Possibte w i th the P)A 

By Dave Antreasian 

The PIA - magical black box with 

multi-functions, a baffling name and as 

many pins as an 8080 chip. How is it used 

and why? 

Before answering these questions, it's 

important to realize that the days of 

simple, discreet component circuitry are 

quickly vanishing. Since it's obviously 

easier and less costly to produce a product 

with only a few parts, the current trend is 

toward higher integration assemblies. 

However, IC manufacturers cannot be 

expected to produce a specialized chip for 

the millions of diverse electronic products 

on the market today. For this reason, 

highly condensed yet extremely versatile 

ICs like the PIA will become increasingly 

popular in the future. However, with this 

increased versatility, designers will have to 

provide more control information (especial-

ly mote software control) to define func-

tional conditions to the chip. Hopefully, 

this article will clear up some of the 

mystery and confusion regarding initializa-

tion of the PIA. 

6820 PIA 

The (6820) peripheral interface 

adapter is actually a highly condensed data 

bus buffer system complete with hand-

shake lines. Used on several of the 8800-

based MITS cards (Altair 88-ADC, 

88-AD/DA, 88-4PIO, 88-PCI) and 680 

cards (Altair 680 Universal I /O, 680-PCI, 

680-AD/DA), the 6820 contains enough 

circuitry to replace approximately 10 

standard TTL IC's. 

Functions of the 6820 include two 

independent sections -- A and B. Each 

contain: 

1. Eight data lines which can be 

independently set up as inputs or 

outputs (or both be reinitializing 

during system usage and multiplex-

ing from one function to the other). 

2. An independent input (Flag) line 

CA1 or CB1) with presetable transition 

polarities (also enabling or disabling 

respective interrupt request (IRQ) 

lines). 

3. An Input/Output line (CA2 or CB2) 

which can be set up as either an input 

flag similar to CA1, CB1 or used as an 

output line to strobe external circuitry. 

If used as an input, this flag is inde-

pendent of the CA1, CB1 flag. If used 

as an output, this line can be set 

directly by writing a command word to 

the Status Register or by a READ/ 

WRITE command to the DATA Regis-

ter(WRITE for Section B, READ for 

Section A). By re-initializing during 

system usage, the Input/Output 

functions of this line can be multi-

plexed. (See Fig. 1 for a block 

diagram of the IC.) 

4R/W and " E " lines 

The R /W line is used by the PIA to 

define either a READ data command from 

the PIA or a WRITE data command to the 

PIA. A low-to-high transition of the " E " 

line is used to strobe data into the PIA or 

latch data to be read by the CPU. Note that 

when writing to the PIA, data is latched 

onto data lines defined as output lines but 

is not latched when such lines are treated 

as input lines. 

Reset Line 

The reset line is used to clear all 

internal registers, set up data lines as 

inputs and set up CA2, CB2 lines as inputs 

with IRQ lines disabled. Initialization soft-

ware must redefine all functions after a 

reset is applied. 

Register Selection 

There are three internal registers in 

each section: 

1. Status Register - used to specify 

transition polarities of flag lines and 

enable interrupts. 

2. Direction Register -- used to speci-

fy direction of data flow for each of 

eight data lines. (Useful during ini-

tialization sequence only.) 

3. Data Register -- accessed when 

reading from or writing data to the 

PIA. 

Usually, the Direction Register will 

not be accessed except during initiaii-

zation. It has the same channel 

address as the Data Register and is 

accessed by writing a (O) into bit 2 of 

the Control (Status) Register. Once 

this is done, all calls to the Data Regis-

ter Ch. # will access only the Direction 

Register, not the Data Register. 

Therefore, the following sequence of 

initialization is required for each 

section of the PIA: 

1) Access status channel with bit 2 (O) 

2) Access data channel (now the 

Direction Register) and define 

eight lines as inputs (0) or outputs 

(l's) 

3) Access status channel and define 

interrupt flags, CA2, CB2 outputs, 

etc., with bit 2(1) 

4) Next, access to data channel will 

access Data Register. 

Now repeat this sequence for the other 

section. 

After this has been done, initialization 

is complete, and unless multiplexing of 

functions is required, further register 

access will be made to either the Data 

Register (Read or Write) or the Status 

Register (Monitor Flags, strobe output 

lines,etc.) 

The flag lines can be used by monitor-

ing the proper status bit (bit 7 for Section 8; 

bit 6 for Section B) in software. When the 

required transition (as specified during 

initialization) occurs, the appropriate 

register bit will be set high. If enabled (as 

specified during initialization), the respec-

tive IRQ line will go LOW.* If both CA1 

and CA2 lines are defined as input flags, 

the proper transition at either will cause 

the IRQA line to go low. The IRQ lines may 

be tied to vectored tnterrupt bus lines if 

desired. To clear the interrupt, a read 

command to the appropriate Data Register 

must be performed. (See Fig. 2 for a 

condensed table of functional initializa-

tion options.) 
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Input/Output Strobe Lines 

8 Data Lines CA1 CA2 CB2 CS1 S Data Lines 

LOW = Data/Direction Registers 

HIGH = Status Register 

Figure 1. 

CA2 DATA/ CA1 

SETTING SPECIFIC STATUS tRQA IRQB (ORCB2) DIRECTION (ORCB1) 

WORD BITS FLAG FLAG SETUP ACCESS SETUP 

SETS Bit 7 6 s 4 3 2 1 0 

UP CA f SETS IRQ FLAG 4. 'RQ DISABLED X X X X X X 0 0 

CA1 CA11 SET IRQ FLAG - 'RQ ENABLED X X X X X X 0 1 

(ORCB1) CAL A SETS IRQ FLAG A , IRQ DISABLED X X X X X X 1 0 

TRIGGER CA1 A SETS IRQ FLAG A , IRQ ENABLED X X X X X X 1 1 

INIT. DEFINES DATA CH. ADD AS DIREC. REG. X X X X X 0 X X 

SETUP DEFiNES DATA CH. ADD AS DATA REG. X X X X X 1 X X 

SETS CA2 f SETS IRQ FLAG A, IRQ DISABLED X X 0 0 0 X X X 

UPCA2 CA2 f SETS IRQ FLAG A. IRQ ENABLED X X 0 0 1 X X X 

(OR CB2) CA2 A SETS IRQ FLAG A . IRQ DISABLED X X 0 1 0 X X X 

TRIGGER CA2 A SETS IRQ FLAG 4, IRQ ENABLED X X 0 1 1 X X X 

SETS CB2 f FOLLOWiNG E 41, CB2 A WHEN glT 64 X X 1 0 0 X X X 

UP CB2f FOLLOWING E A .CB2AONNEXTEA X X 1 0 1 X X X 

CB2 CB2 SET t DtRECTLY FROM STATUS WRtTE X X 1 1 0 X X X 

OUTPUTS CB2 SET A DIRECTLY FROM STATUS WRITE X X 1 1 1 X X X 

SETS CA2 f FOLLOWING E A 2, CA2 A ON BIT 7 A X X 1 0 0 X X X 

UP CA21 FOLLOWING E A , CA2 A ON NEXT E A X X 1 0 1 X X X 

CA2 CA2 SETf DIRECTLY FROM STATUS WRiTE X X 1 1 0 X X X 

OUTPUTS CA2 SETA DtRECTLY FROM STATUS WRtTE X X 1 1 1 X X X 

NOTES 

X Don't Care 

A Low-To-High transition signai 

' A High-To-Low transition signal 

""Similar to an open-collector output-pull up 

to Vcc, Active LOW. 

* CA1 & CB1 are inputs only 

* CA2 & CB2 can be inputs/outputs 

* IRQ FLAGS are interrupt flags set only 

by input lines as setup in initialization 

1 CB2 on the next E following a WRITE command to the Date register 

2 CA2 on the next E following a READ command to the Data register 

Figure 2. 

(they cannot be set by software). They 

are always reset by a data read from the 

appropriate section. 

* Trigger transition selected for flag lines 

will always set status bit flag regardless 

of IRQ ENABLE/DISABLE. If flag is set 

and interrupts are then enabled, IRQ 

line will immediately go active (LOW). 

Note that sections (A) and (B) are identical 

except when using CA2 and CB2 as outputs 
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GUTCHES 
Troubteshooting the 88-4P!0 

By Bruce Fowler 
MITS 

Using the Altair 4PI0 board permits 
the input and output of data in parallel 
form. Unlike the serial 2SI0 or ACR 
boards, the parllel data has no framing 
(start and stop bits) associated with it. The 
serial start bit tells the ACIA or UART that 
new data is being entered. Parallel data 
may change several times before the valid 
data is stable, so some means is required to 
tell the 4PIO when valid data is present. 

This can be done by a handshaking 
signal to either CAl or CB1 (and some-
times CA2 or CB2). An active transition on 
the CAl or CB1 level causes bit 7 of the 
appropriate control register to go high. So 
if bit 7 of the Control Register is monitored, 
the CPU can tell when new valid data is 
ready to be input. While the CPU inputs 
this new data, the output terminal must 
keep it stable. This input data is not 
latched into the 4PIO chip. 

Inputting on a 4PIO can be compared 
to an enabled buffer. When the CPU has 
input the data, bit 7 of the corresponding 
Control Register is cleared to zero, thus 
denoting that no new data is waiting to be 
input. Another handshaking signal may be 
used to tell the output terminal that more 
data can now be sent. Note also that unlike 
the UART and 2SIO, no error detection 
takes place. The 4PIO chip (the 6820 PIA) 
does not generate parity or check for 
overrun. Overrun error occurs when data 
is sent before the previous data has been 
read by the receiver. It is the responsibility 
of software and hardware externa! to the 
6820 to avoid overrun errors. 

By the same reasoning, the 4PIO must 
tell the output terminal when new data is 
ready for it. This is again done by hand-
shaking signals, usually CA2 or CB2. 
These tell the output terminal when new 
data exists. Unlike parallel input, data to 
be output is latched into the 4PIO chip. 
This allows the 4PIO to keep outputting the 
same data while the CPU does other tasks. 
Otherwise, the CPU would have to wait 
until the output terminal indicated that it 
has strobed in the data. 

As with the ACIA (on the 2SIO board), 

6S29 must be written into or initialized 
s i iware. The immense variety of 

x- a Mnations may be confusing to the user. 
If the 4PIO Theory of Operation Manual is 
inadequate, see "Software Initialization of 
Parallel and Serial I/O Boards," by Pat 

Godding, June 1976, CN or "4PIO Opera-
tion," by Bill Kuhn, October 1976, CN. 
The best source for specs is M6800 Micro-
computer System Design Data from 
Motorola. Osborne's INTRODUCTION TO 
MICROCOMPUTERS, Vol. 2, SOME 
REAL PRODUCTS also has an explanation 
of the 6820. (Please note the error on p. 6-
48 of this book. Bits 6 and 7 of the Control 
Registers are cleared by a read on the Data 
Register and not on the Control Register.) 
In spite of this error, the book explains the 
6820, especially handshaking. I used the 
interrupt input and output handshaking 
configuration as described in this book to 
check the 4PIO. 

TROUBLESHOOTING 

Problems with the 4PIO can occur in 
several areas: wait circuitry, selecting and 
control circuitry, and the data lines. Most 
problems can be isolated by single step-
ping an input (IN) or an output (OUT) 
instruction on the data or control channel. 
Readers with an Altair 8800B should not 
use the M l single step option for the 
following. The following deals with 
the first port of a 4PIO addressed at 
location 40 (octal). Users should be able to 
alter the following explanation so that it 
applies to their particular case. 

WAIT CIRCUITRY 

The 6820 was designed for a slower 
running microcomputer (Motorola now 
manufactures a faster 6800 and family). A 
wait state is required for inputting data 
from the 6820. To check the wait circuit, 
run the prgram in Table 1. If low-going 
pulses occur at pins 13, 14 and 15 of IC C, 
then the wait circuitry is working. If not, 
check pin 2 of IC 0 for low pulses. If no 
pulses are present, trace logic back to 
PWAIT (which should be pulsing on the 
bus) and to POC (which should always be 
a high level) on the bus. Repair is neces-
sary. If this is not the problem, compare 
levels while the program is running to 
column A of Table 2. Trace logic back to 
the bus for any discrepancies. Check the 
clock to IC 0 by stopping the computer and 
examining to location 000. Compare the 
levels on the 4PIO board to column B of 
Table 2. Press single step two times and 
monitor pin 13 of IC 0 for a low pulse. 
Compare levels to column C of Table 2. 
Repair as necessary. 

CHIP SELECT AND REGISTER SELECT 

When inputting or outputting to a 

6820, all three chip selects must be active 

or no data transfer takes place. There are 

four addressable registers within the 

6820 — two for section A and two for section 

B. RSO and RSI select one of the four. 

CONTROL SIGNALS 

One of the three control signals, RST, 
simply clears the 6820 when the chasis is 
powered up. R/W is the opposite of SOUT. 
If an output instruction is executed, SOUT 
will go high, causing a low R/W. R/W 
controls the bi-directional bus direction of 
the 6820. All timing is centered around the 
enable signal, which is derived from the 
logical OR of PWR and PDBIN. PWR is 
active when an output instruction is 
executed, and PDBIN is active when an 
input instruction is executed. 

CHECKING DATA LINES AND CONTROL 

SIGNALS 

To test the data lines as well as the 
above mentioned signals, do the following. 
Connect a wire to ground, perhaps the 
chassis itself. Toggle in the program in 
Table 3 up to location 030. For the follow-
ing, press single step the given number of 
times. Check the TTL levels and repair as 
necessary. Then continue on single 
stepping from the point left off in the 
program. Examine to location zero. Press 
single step four times and compare levels 
to column A of Table 4. Press single step 
three more times and compare levels to 
column B of Table 4. Press single step 
three more times and compare levels to 

] I i ! 
t -

CB 2 (output) I' 

^ J 
I 

i ! 
' i 

CAl (input) 

t 

CA2 (output) jf 

] 

CB1 (input) j/ 

l 
i 

i ' : 
! ! ! ! i ' 

A A ^ V ^ A , / 
Part Part Part Part Part 
A B C E A 

Figure 1 - Handshaking Signals 

Twenty-Two CN/September, 1977 



column C. Press single step five more 

times; compare to column D. Press single 

step 13 more times and compare to 

column E. 

At this point data flows straight from 

PA0-PA7 to data bus lines DIO-D17. The 

data shows up on the data lights. Since 

nothing is connected to PA0-PA7, all highs 

should appear on the data lights. TTL 

logic, which is what section A expects, 

interprets open inputs as highs. If one or 

more of the data lights do not light, trace 

the appropriate data line from the 6820 to 

the bus, looking for shorts. Repair any bad 

ICs when found. Take the ground wire and 

connect it to PA0-PA7 one at a time. By 

doing this with the 4PI0 cable inside the 

circuitry, it will also check the cable. (See 

Table 5.) Be extremely careful not to short 

any two points together. As each PA data 

line is grounded, the corresponding data 

light on the front panel should go out. 

Otherwise, trace the logic and repair as 

necessary. 

ECHOING 

To check the 4PI0 data lines fully, an 

echo is required. Don't rely on the output 

terminal, since it may or may not be 

functioning. Thus, an echo plug is 

required. Take a DB-25 male pin connector 

and wire it according to Table 5. If one is 

not available, wire the corresponding pins 

of the 6820 socket together as shown in 

Table 6. You may want to take out the 6820 

to avoid overheating it. This wiring simply 

connects section B (PB0-PB7, CB1, CB2) 

to section A (PA0-PA7, CA1, CA2). The 

program in Table 3 initializes the 6820 so 

that section B, which can drive more 

current, is output, and section A is input. 

Toggle in the full program in Table 3. 

It will be used later for testing handshak-

ing, and is thus extensive. Run the pro-

gram. Stop the computer. If the address 

lights show address bit A7 high, then the 

4PIO echoes data correctly. Go on to the 

next section. If the address lights show 

address sit all high, then a transmission 

has occurred. The byte that was output is 

stored in location 000101. The byte that 

was input is stored in location 000100. 

Find which bits do not match, and trace the 

logic for the corresponding data line from 

the bus to the 6820 and around the echo 

plug to the 6820. (The input data line has 

already been checked). Look for opens and 

shorts on the data lines. If another 6820 is 

available, replace the 6820 with it. Notice 

that when data is output from the 6820, 

from the next enable pulse on until new 

data is output, that data will be continually 

present on the output pins. Output opera-

tion can be checked by measuring the 

levels on the assigned output pins of the 
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6820 and knowing what was output. An 

input will temporarily tri-state section B 

data lines if they are assigned as outputs. 

HANDSHAKING 

Handshaking signals are provided to 

announce the presence of valid data. To 

check the operation of the handshaking 

signals, put in 037 at location 044 and 055 

in location 062 in the program of Table 3. 

Examine to zero. Press single step 37 

times. Monitor CB2 and CA2. Press single 

step three more times. As shown in Figure 

1, CB2 should go low and CA2 should go 

high. Single step two more times. Bit 7 on 

the data lights should be high, indicating 

that bit 7 of Control Register A is high. 

Otherwise, check for shorts. Single step 

nine more times. CA2 should go low, while 

CB2 should go high. Single step seven 

more times. Bit 7 on the data lights should 

be high, indicating that bit 7 of the B 

Control Register is high. Otherwise, check 

for shorts or opens on the CA2 or CB1 line. 

The low-to-high transition of CA1 (or CB1) 

sets bit 7 of Control Register A (or B). 

Single step 17 more times to complete one 

full loop. Make sure you are at location 

035. Repeat this procedure one more time 

(starting with single stepping two more 

times). This should be enough to check 

your 4PIO out for handshaking. 

Figure 1 is useful for understanding 

the 4PIO handshaking. In part A of Figure 

1, the A section is ready for input (address-

es 50-025 of the program loop in Table 3). 

At part B the B section outputs data, 

causing bit 7 of Control Register A to 

indicate that new data is available. CA2 

goes high to inform the output device to 

send no more new information to avoid 

overrun error. Part C is where the CPU 

polls the 4PIO to see if it has new data to 

input. Part D is where the data is input. 

This clears bit 7 of register A and sets bit 7 

of register B. The active high level of 

Control Register B bit 7 indicates to the 

CPU that new data can be output. CB2 will 

go low when new data is sent. This informs 

section A that new data is present. CB2 

sets bit 7 of Control Register A by causing 

a transition on CA1. The cycle then 

repeats. 

This information should help 4PIO 

users do extensive troubleshooting. But 

if you're still having problems with your 

4PIO board, please contact your local Altair 

Computer Center or MITS. 

TABLE 1 

LOCATION OP CODE MENMONIC 

0 0 0 3 3 3 I N , 4 0 

001 040 

0 0 2 3 0 3 JMP 

0 0 3 000 

0 0 4 000 

TABLE 2 F O R F A I T C IRCUITRY CHECK 

IC P IN LABEL A B C 

N & P H L 

e 9 P L H 
e 10 S INP P L H 

0 1 P H L 

a 7 H H H 

a 3 L L L 

c 14 P H H 

c 13 PRDY P H H 

c 15 P H H 

t 5 L L L 

i A PMAIT P H H 

O 2 P L L 

H 3 POC H H H 

p = PULSES, H= TTL H I5H 0 2 V . ) . L=TTL LOU ( C S V ) 

c o n t i n u e d 
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G U T C H E S 
Troub leshoot ing t he 88-4P !0 

con t inued 

TABLE 3 

L O C A T I O N 

0 0 0 

OP CODE 

0 7 6 

MNEMONIC 

MVI A 

MEANING C H E C K I N G DATA 

TABLE 4 

L I N E S AND CONTROL S I G N A L S 

0 0 0 

3 2 3 O U T , 4 0 DONE TO TALK TO DDR OF A 
LABEL I C P I N A B C D E 

0 4 0 

3 2 3 O U T , 4 2 DONE TO TALK TO DDR OF B 
R / M J 2 1 L L L L H 

0 4 2 

3 2 3 O U T . 4 1 SET A UP AS ALL INPUTS 
CSO J 2 2 H H H H H 

0 4 1 

0 7 6 MVI A 
C S 2 J 2 3 L L L L L 

0 1 0 3 7 7 

3 2 3 O U T , 4 3 SET B UP AS ALL OUPUTS 
CS1 J 2 4 H H H H H 

0 4 3 

0 7 6 MVI A 
E J 2 5 H H H H H 

0 4 4 

3 2 3 OUT, 4 2 TALK TO A ' S DATA R E G I S T E R 
D 7 J 2 6 L L L H * 

0 2 0 

0 4 2 

3 2 3 OUT, 4 0 TALK TO B ' S DATA R E G I S T E R 
D6 J 2 7 L L L H a 

0 4 0 

0 0 6 MVI B SET UP R E G I S T E R B AS COUNTER 
D5 J 2 8 L L L H * 

0 0 0 

3 3 3 I N , 4 1 CLEAR B I T 7 OF A 
D4 J 2 9 L L L H a 

0 2 6 

0 4 1 

3 3 3 I N , 4 3 CLEAR B I T 7 OF B 
D3 J 3 0 L L L H * 

0 3 0 

0 4 3 

0 0 4 INR B 
D2 J 3 1 L L L H * 

3 1 2 J Z I F ALL C O M B I N A T I O N S T R I E D STOP D1 J 3 2 L L L H 
2 0 0 

D1 3 2 H 

0 0 0 

1 7 0 M O V A , B 
DO J 3 3 L L L H a 

3 2 3 

0 4 3 

OUT, 4 3 OUTPUT BYTE TO B RST J 3 4 H H H H H 

0 4 0 

3 3 3 

0 4 0 

I N , 4 0 CHECK TO SEE I F A R E C O G N I Z E S R S I J 3 5 L H L L L 

3 4 6 

2 0 0 

A N I THAT DATA I S READY TO BE 

INPUTTED 
RSO J 3 6 H H L L L 

3 1 2 

0 4 6 

J Z A 1 L L L L H 

0 0 0 

3 3 3 I N , 4 1 INPUT THE BYTE FROM A 
B 1 L L L L H 

0 5 0 

0 4 1 

1 1 7 M O V C . A SAVE BYTE TO BE OUTPUTTED 
A 15 H H H H L 

2 2 0 SUB B COMPARE I T TO BYTE OUTPUTTED C 1 H H H H L 
3 0 2 J N Z I F TWO DO NOT MATCH JUMP 

H H H H 

OOO 

0 1 0 

AND STORE BYTES -a = VALUE MAY BE E I T H E R H I G H OR LOW 

0 5 5 3 3 3 

0 4 2 

I N , 4 2 S E E I F B R E C O G N I Z E S THAT DATA 

MAS READ BY A 

3 4 6 A N I TABLE 5 

0 6 4 

0 6 5 

000200 
000201 
000202 
001000 
001001 
001002 
0 0 1 0 0 3 

0 0 1 0 0 4 

0 0 1 0 0 5 

001006 
0 0 1 0 0 7 

001010 
001011 
001012 

200 
3 1 2 

0 6 4 

000 
3 0 3 

026 
000 

3 0 3 

200 
000 
1 7 1 

062 
100 
000 
1 7 0 

062 
101 
000 
3 0 3 

010 
010 

J Z 

JMP 

ECHO M I R I N G FOR D B - 2 5 CONNECTOR 

JMP 

MOV A , C 

STA 

MOV A, B 

STA 

P I N LABEL CONNECTED TO P I N LABEL 

2 CA1 1 3 CB2 

3 C A 2 12 CB1 
LOOP AROUND AND TRY 4 PAO 2 0 PBO 

ANOTHER BYTE 5 PA1 2 1 PB1 

1 0 P B 6 I S P A 6 

LOOP WHEN DONE 11 P B 7 19 PA7 

14 P A 2 2 2 P B 2 

1 5 P A 3 2 3 P B 3 

1 6 P A 4 3 4 P B 4 

ERROR ROUT INE 17 P A 5 2 5 P B 9 

STORE INPUTTED BYTE I N 1 0 0 P I N NUMBERS REFER TO P I N S ON D B - 2 5 CONNECTOR 

JMP 

STORE OUTPUTTED BYTE I N 101 

LOOP TO SHOW THAT ERROR 

HAS OCCURRED 

TABLE 6 

6 8 2 0 ECHO W I R I N G 

LABEL P I N CONNECTED TO LABEL P I N 
CA1 4 0 CB2 19 

C A 2 3 9 CB1 1 3 
PAO 2 P B O 1 0 

PA1 3 P B 1 11 
P B 6 16 PA6 a 
P B 7 1 7 PA7 9 

P A 2 4 P B 2 12 
P A 3 5 P B 3 13 
P A 4 6 P B 4 14 
P A 5 7 P B 5 15 
P I N NUMBERS REFER TO P I N S ON 6 S 2 0 
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Bits and Pieces 
R/W Means Read )t and Weep 

By popular demand we're reprinting 

the following letter to the Editor (CN, 

August, 1975). It should provide some 

comic relief for those of you who are 

struggling through your first programs. 

Wendell S. Rice 

Chief Engineer 

Data Documents Systems Corp. 

Merriam, KS 

Software Package No. 69 

Altair SUPER EXTENDED BASIC - $1495. 

When purchased with an Altair, 42K 

memory and either a duplex I/O board and 

4K of write-only memory, you have our 

deepest sympathy. 

INSTRUCTION STATEMENTS: 

CCS Chinese Character Set 

BH Branch and Hang 

BSO Branch on Sleepy Operator 

DO Divide and Overflow 

RPB Reverse Parity and Branch 

ARZ Add and Reset to Zero 

WWLR Write Wrong Length Record 

SRSD Seek Record and Scar Disc 

RC Read Chaos 

TDB Transfer and Drop Bits 

EROS Erase Read Only Storage 

UER Update and Erase Record 

CM Circulate Memory 

M W M Move and Wrap Memory 

DIA Develop Ineffective Address 

LMB Lose Message and Branch 

SC Scramble Channels 

LC Loop Continuous 

BIM Branch on Index Missing 

CD Create Data 

WOS Write only Storage 

BLI Branch and Loop Indefinite 

HCF Halt and Catch Fire 

BBI Branch on Bumed-out Indicator 

BPO Branch and Power-off 

II Inquire and Ignore 

AI Add Improper 

ARZ Subtract and Reset to Zero 

RI Read Invalid 

WNR Write Noise Record 

ED Eject Disc 

EIOC Execute Invalid Op Code 

RNR Read Noise Record 

DSP Destroy Storage Project 

MDB Move and Drop Bits 

MLR Move and Lose Record 

MC Move Continuous 

RT Reduce Thru-put 

IOR Illogical " O R " 

IAND Illogical " A N D " 

UCB Uncouple CPU's and Branch 

EO Execute Operator 

RBG Random Bug Generator 

RBG Random Bug Generator 

(Special Feature) 

IIB Ignore Inquiry and Branch 

CASH GRANTS 

OFFERED 

FOR SURVEYS 

OF PROGRESS 

!N ROBOTICS 

The United States Robot ics Soci-
ety is offering three gran ts of $ 1 0 0 
each to s tuden ts w h o survey prac-
tical activity in research and devel-
o p m e n t on robots in specified areas 
of the wor ld . The surveys mus t be 
per formed for academic credit w i t h 
formal approval by appropr ia te 
professors . 

W i t h the sudden rise in the use 
of personal , privately o w n e d com-
puter sys tems , private research 
and deve lopment in robot ics and 
artificial intelligence has surged . 
More than seventy membe r s of 
USRS^* a lone report active w o r k 
on robots . The Society is seeking 
an est imate of robot ics activity 

9 wor l dw ide , and these first gran ts 
3 are the beginning of a general 
3 search for the robots . 
§ Gran ts will be m a d e for surveys 

of: The United States Wes t of t he 
Mississippi , the United States East 
of t he Mississippi and Canada . 
Future gran ts will be made for sur-
veys of other areas. 

The reports wili be publ ished as 
part of the basic robot ics literature, 
e s t a b l i s h i n g t h e i r a u t h o r s a n d 
superv isors as impor tan t con tac ts 
in the field. 

Proposa ls f rom appl icants are 
due on or before 3 0 Sep tember 
1977 . Comple ted reports are due 
on or before 3 0 J u n e 1 9 7 8 . 

For details, write: 
Survey Grants 
United States Robotics Society 
Box 26484 
A l b u q u e r q u e , N M 8 7 1 2 5 

A S D C , A U G 
Scheduted 
to Move 

The MITS Altair Software Division 

Company (ASDC) and The Altair User's 

Group (AUG) will move to Pertec's Micro-

systems Division (MSD) in Woodland 

Hills, California at the end of September. 

Marion B. Guerin, who was recently 

named Sales Manager, Applications 

Software for Pertec's Microsystems Divi-

sion (MSD), will be in charge of the move. 

"Most of the MSD marketing activities will 

be based in California," he said. "Having 

the software operation in close proximity to 

the other MSD marketing functions will 

make it easier to coordinate and improve 

the total marketing program." Guerin said 

this will mean more documentation, more 

support for dealers and just better overall 

software. 

Guerin said the move will not delay 

any orders for programs. 

FOR SALE: 

Aitair 8800a 

Unused 1975 version, 256 bytes. Factory 

built and tested. $550. Ralph Reinke, 30305 

Bob-O-Link Ave., Wausau, Wis. 54401. (715) 

842-0196. 

Attair 8800a CPU 

$600. 

88-4MCS 4K static memory card 

$200 
88-18MCS 16K static memory card 

$800 

88-DCDD disk drive and controller 

$1500 

88-2SiO seria) teietype interface 

$150 

88-ACR audio cassette interface 

$150 

New ASR-33 Teietype 

$1000 
All above units brand new, factory as-

sembled and tested. For more information 

about the above seven products, contact: 

Michael Clark, R.D. No. 3, Nazareth, PA. 

18064. (215) 759-6873. 
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ROBOTS 
AN ESTIMATE OF THE STATE OF THE ART, AND AN INVITATION 
TO PERSONS OF ADVENTUROUS SPIRIT AND INQUIRING MIND 

We believe that the key discoveries 
necessary to the art of robotics have al-
ready been made. We believe that be-
hind various national borders, behind 
the doors of various scientific disci-
plines from biochemistry to microelec-
tronics, all of the primary technical 
obstacles have been overcome, aH 
feasibilities been proven, aH methods 
become known. 
We believe that what remains to be 

achieved is principally the refinement 
of systems app!ying existing technolo-
gies — and that this work proceeds 
apace. We believe the world is about 
to encounter (where? when?) ma-
chines that truly simulate the intel-
lectual and physical behavior of human 
beings: robots. 
Robots are on our doorstep. Robots 

are almost within our reach. And we 
within theirs. 
Robots are as frightening as they are 

alluring, as threatening as they are 
promising. Yet whatever reservation 
anyone may feel, there is now no turn-
ing back, no possibility of their denial 
or prohibition. The development of 
artificial intelligence proceeds not only 
in the laboratories of governments and 
industries, but also among the thou-
sands of individual amateurs and 
hobbyists, free citizens exercising 
their freedom with experiments in the 
fascinating field of personal com-
puting. We believe that since they are 
possible, robots are inevitable — "for 
good or ill." 
The United States Robotics Society is 

established "for good" — for the good 
of mankind — not in opposition, for 
opposition is idle, and not in advocacy, 
for advocacy is unnecessary. We invite 
the support and active participation of 
all persons who can face the Age of the 
Robot with the appropriate curiosity 
and spirit of adventure. 

Intelligent machines for production 

and service — tireless, able to under-
stand commands and carry them out 
sensibly without feeling a need to 
make policy for themselves — may be-
come the long-heralded boon to 
humanity, lifting ancient burdens of 
toil and suffering. But if they were to 
be developed "in the dark" -- if they 
were to be sprung upon us full-blown, 
without our preparation — the reaction 
might be disastrous. The survival of 
our own society may depend quite 
soon (how soon?) on our ability to deal 
even with "friendly" robots. If we 
ignore them, if we are incompetent in 
their fields, we are surely not serving 
our own interests. 

Intelligent weapons now appear prac-
ticable within the next decade or two 
— systems, for example, that can 
differentiate between friend and foe 
automatically, through their own sen-
sors and judgement, If such weapons 
are developed anywhere in the world, 
they will be extraordinarily dangerous 
to any society which has not learned 
how to deal with them. 
Robotics has charm not only for 

trained technicians and professionals 
but also for millions of persons without 
the skills and resources to participate 
directly in the work. Communication 
about robotics, like robots themselves, 
is inevitable, — through publicity, 
rumor, espionage, and now through 
The United States Robotics Society. 
This organization will assume the im-
portant task of identifying discoveries, 
gathering supporting data from the 
hidden recesses where they rest, col-
lating, publishing, becoming a center 
of information for all parties seeking 
knowledge of current and historical 
activity in robotics. We urge you to be 
one of us — for just $12/year. 

Benefits to USRS Members 
Growing Year by Year 

W Certificate of Registration as USRS 
Member. 

* USRS Newsletter, USRS bulletins, 
other correspondence from the Society 
as occasion demands. 
W Aid in contacting other USRS 
Members in home regions, toward 
establishing USRS events. 

* Opportunity (Qualified) to officiate 
as USRS Representative at Regional 
and National robotics shows and 
exercises. 

W Service (Optional) as USRS Con-
tributing Correspondent, 
t Participation in the determination 
of procedures for investigating, report-
ing, archiving, and disseminating 
information relevant to robotics . . . 
and 
* Privileged access to the Library of 
Robotics to be established by USRS. 
& Discounts as may from time to time 
be arranged by USRS on behalf of 
members — with publishers, manu-
facturers/distributors of robotics re-
lated materials. (Note: this benefit 
alone can be expected to repay the 
moderate USRS Membership costs 
many times over.) 

United States 
Robotics 

Society 
A Non-Profit Organization 
Glenn R. Norris, President 

Box 26484 Albuquerque, 
New Mexico 87125 

Application for Charter Membership 

USRS 
United States Robotics Society 

Box 26484 Albuquerque, NM 87125 

Enciosed is my check for $12 for enrollment and first-year dues 

NAME 

The following information is requested (OPTIONAL) to help ensure your full 
participation in the benefits of the Society. 

My interest in robotics derives from ( ) intellectual curiosity ( )academic training 
( ) professional/business 

Ptease tei) us more: 

( ) 1 am interested in joining with others in locat USRS activity, 

t might serve as ( ) Correspondent ( ) Official at USRS functions. 

ADDRESS FOR USRS 

COMMUNICATIONS. . CiTY. .STATE. ZIP .PHONE. 



When the chips are down . -. 
and troubleshooting is in order, always refer to Computer Notes 
!n addition to articles that deal with troubleshooting procedures, 
CN carries information on the latest hardware, software and appli 
cations. C!\! is bound in a standard format that can be kept easily 
in a three-ring binder as a ready reference for the computer 
club or the individual user. 

To insure that you never miss an issue, simply fill out the coupon 
below and send it along with the subscription fee to: 

/ ^ c o m p u t e r 
notes a subsidiary of Pertec Computer Corporation 

2450 Alamo S.E. 

Albuquerque. New Mexico 87106 

Please send me a 1 year subscription to Computer Notes. 

$ 5 . 0 0 per year in U S. $ 2 0 OO per year overseas. 

NAME: 

ADDRESS : 

CITY: STATE: __Z!P 

COMPANY/ORGANIZATION 

D Check Enclosed MC or BAC/Visa #-
Q Master Charge Exp Date 
D BankAmericard/Visa Signature 
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