
T h e M a i n f r a m e o f t h e S e v e n t i e s

Arthur Rezac of Applied Com-
puter Research recently announced
the development of an Altair system
for monitoring production at a
large jewelry manufacturing plant
in the East. This system includes
an Altair 8800a mainframe with 48K
of memory, seven teletypes, four
CRTs, four floppy disk drives, and
a data communication line. In ad-
dition, six electronic weighing
scales are in turn interfaced to
six of the teletypes.

At each stage of production,
the jewelry, which is made of gold,
will be weighed to determine if
there has been any weight loss
and if that loss is consistent with
the process the jewelry just went
through. In addition to this, â
worker will enter the production^
number, where the jewelry came from
and what stage it is going to next.
This information is transmitted to
the Altair to verify that the pro-
duction number is valid, the job
is at the correct production stage,
and it is headed in the right dir-
ection.

Thus, the manufacturer can
control theft and quality of his
production as well as validate
where any particular job is at
any point in time.

The Altair 8800b, now in full
production, has generated a large
number of inquiries, reminiscent of
the response to the original Altair
8800. Because of this, we are devot-
ing a large portion of this month's
Computer Notes to technical informa-
tion on the 8800b.

When the original Altair 8800
first went out into the field, it
was by far the most advanced design
of its kind. By being at the van-
guard of the computer movement, MITS
has been in a unique position to
assimilate feedback and new informa-
tion from many sources: from hobby
customers, from business users, from
computer design industries. All of
these influences have been percolat-
ing at MITS since the first Altair
computer came off the line, and the
current result is the Altair 8800b.
We feel it will be "the mainframe of
the 70's."

As anyone associated with micro-
computers will tell you, the field
is evolving so rapidly that keeping
current is almost a day-to-day job.
The Altair 8800b incorporates many
new electronic and mechanical fea-
tures including some of the newer

At the end of the day, the Altair is con-
nected to a Burroughs 3500 data processing
system, and all of the day's production data
is transmitted for permanent storage.

Mr. Rezac, who has years of experience in
large systems development and sales, reported
to Computer Notes that he evaluated every
microcomputer on the market and determined
that the Altair "had the best price/performance
ratio without a doubt".

Mr. Rezac and Applied Computer Research
are also at work on a low-cost business system
which they plan to market throughout the North-
east. This system, which is also built around
the Altair 8800a, includes 32K of memory, dual
floppy disk drives, and a DEC writer.

The first unit is scheduled to be installed
at a marina on the East Coast, where it will
provide inventory control, labor distribution
analysis, work-in-process control, payroll,
accounts receivable and payable, general led-
gers, and a sophisticated sales follow-up
system.

According to Re^ac, the sales follow-up
system is one feature not offered by his nearest
competitors, who are nearly $10,000 higher in
price. This system is designed to determine
whether salesmen have adequately followed up
leads and what the results of this work has
been.as well as analyze the cost effectiveness
of-advertising and other marketing expenses.

-continued on page 9

-continued on page 4

The- new design features of the
Altair 8800b that will be discussed

here include: enhanced front panel
capabilities, new Display/Control
logic, the Front Panel Interface
Board, the new CPU Board, added bus
lines and heavy duty power supply.

integrated circuits for the 8080
family of microprocessors.

PAGE TUENTY-FOUR COMPUTER NOTES - JULY, M7L

Business week - are Yon Listening?
By David Bunnell

This column started as a tir-
ade against the folks at Business
Week, however, before I could
complete it, I had to make a com-
plete turn around. The reasons
are explained below.

On July 5 or thereabouts, I
received a copy of Business Week,
and lo and behold there was a
microprocessor on the cover. (Or
to be more accurate, there was an
illustration of a microprocessor
sitting on the tongue of some kind
of robot.) The headline read,
"Smart Machines--the computer-on-
a-chip adds decision making and
memory to all kinds of products".

Hurriedly I turned to page 38
where the article began. At last,
I thought, the real world has dis-
covered the low-cost microcomputer
and all the things that go along
with it including computer hobby-
ists, computer clubs, and personal
computing conventions.

The article started out well
enough with a quote from J. Stanley
Webb, a VP at TRW, Inc. According
to Mr. Webb, the microprocessor re-
presents the second industrial rev-
olution: "It multiplies man's
brain power with the same force
that the first industrial revolu-
tion multiplied man's muscle power."

The article went on to list
some of the new, exciting products
that have resulted from the micro-
processor, including the smart
watch, the smart scale, the smart
mobile phone, the smart can making
system, and the smart video game.

I found the smart watch par-
ticularly attractive. According
to the article, you can now buy a

By Gale Schonfeld

I certainly hope you all had a
an enjoyable Fourth of July cele-
bration.

This month I'd like to welcome
Sandy Koppenheffer to the Customer
Service Department. Please call

watch that will permit you to
enter a date such as your wedding
anniversary, your kid's birthday,
or your appointment with the den-
tist and the watch will remind you
when the day comes (or the day be-
fore, if you want). These dates
can be set months in advance.
Thousands of men could probably
save their marriages by purchasing
one of these watches.

I read on, thinking that
buried somewhere in this was going
to be a few paragraphs about micro-
computers, computer hobbyists, etc.,
and how they fit into this big pic-
ture. However, there wasn't one
word about the microcomputer move-
ment. There was interesting text
about a taxi cab meter that could
keep track of five fares simultan-
eously, but not one word about the
Altair. Not one word about the
SCCS.

Someone from Fairchild was
quoted as predicting that computers
would someday be in the home, pro-
bably as a result of Fairchild's
smart video game. That, I thought,
was rather amusing.

So I began this column as a
tirade against Business Week. The
people there must really have
their collective heads in the sand.
However, before I could complete
my hysterics, the next week's copy
of Business Week came across my
desk and what do you know on page
50 was an article headlined:
"Microcomputers Catch on Fast".

This second article included a
photograph of Paul Terrell standing
at the counter in one of his Byte
Shops in California. Behind him was
the Altair "Created by Man" poster.

her if you need help with Users
Group or "Computer Notes" problems.

VISITING MITS?

If you are planning on visit-
ing us at our new factory, we would
very much appreciate it if you
would make prior arrangements with
our Marketing Department. If you
advise us ahead of time, we can be
certain to have someone available
to answer all your questions.

If, during your visit to Al-
buquerque, you wish to purchase
more equipment for your Altair, we
will refer you to the Computer
Shack, our new Albuquerque retail
store. Pete Conner, owner of
Computer Shack, will be happy to
help you with decisions on what
to purchase for your system. The

-continued on page 5

Not only did Business Week
accurately detail the phenomenon
of the home computer, they said
some very nice things about MITS
and Altair. According to Business
Week, "MITS is the IBM of the home
computers".

The results of these kind
words reminded me of the early days
when the Altair was on the cover of
Popular Electronics. For the next
few days I received phone calls
from people all over the United
States and several calls from peo-
ple in Canada, Europe and such far
away places as South Africa. Most
of these people were interested in
setting up new computer stores,
distributorships, or oem type bus-
inesses, but some of them called
simply to find out more about MITS
and the Altair. Other people at
MITS and other people associated
with MITS found the response to be
the same.

I called Lou Fields at the
Southern California Computer Soc-
iety and he informed me that he too
had been receiving lots of phone
calls. The membership of SCCS is
now 6,000 and growing faster than
ever.

This publicity and the response
it created, reinforces my belief
that we are still seeing the mere
tip of the iceberg. Practically
every day I hear of an Altair app-
lication that could conceivably
lead to literally thousands of
Altair systems. (Two such applica-
tions can be found on page one of
this issue.)

Now I look forward to publicity
in places like Time and CBS. Al-
ready one of our VP's has inquired
whether or not I can arrange to
have him interviewed by Playboy.
This particular VP isn't really a
publicity hound, he just wants to
spend a few days at the mansion.

COMPUTER
l * [3 b T E S

Publisher

Editor

Production

Contributors

David Bunnell

Andrea Lewis

l om Antreasian

A! IVIcCahon

Grace Brown

Ed Roberts

Gale Schonfeld

Paul Allen

Tom Durston

Steve Pollini

Pat Godding

Mark Chamberlin

COMPUTER NOTES - JULY- 117b PAGE N I N E T E E N

Something Sweet
for your
attair680-b

MITS is pleased to announce the development of a 16K static card for the

Altair 680b. With an access time of 215 nanoseconds and low power consumption of

5 watts, we feel that this is an excellent addition to the Altair 680b.

To sweeten the pot even more, we are including a free copy of Altair 680 BASIC,

assembler, and text editor on paper tape. ($275 value)

Altair 680 BASIC is identical to the 8K BASIC developed for the Altair 8800.

Features include Boolean operators, the ability to read or write a byte from any I/O

port or memory location, multiple statements per line, and the ability to interrupt

program execution and then continue after the examination of variable values.

Other features of Altair 680 BASIC include variable length strings (up to 255

characters), with LEFT$, RIGHT$ and M1D$ functions, a concatenation operator

and W L and STR$ to convert between strings and numbers. Both string and

numeric arrays of up to 30 dimensions can be used. Nesting of loops and subroutine

calls is limited only by available memory. Intrinsic functions include: SIN, COS,

TAN, LOG, EXR SQR, SGN, ABS, INT FRE, RND and POS, in addition to TAB and

SPC in PRINT statements. Altair 680 BASIC takes 7K bytes of memory.

MITS has also developed an expander card for the Altair 680b that lets you add up

to three boards inside the main case. Read "Computer Notes" for announcements

of additional Altair 680b boards.

PRICES:
Altair 680-BSM, 16K Static Memory Board, including Altair 680 BASIC, assembler

and text editor $685.00 kit
$865.00 assembled

Altair 680 MB Expander Card with one Edge Connector $24.00 kit
Altair 680 BASIC (purchased separately) $200.00
Altair 680 assembler and text editor (purchased separately) $ 75.00

Prices, specifications subject to change. Altow 30-60 days for delivery.

MtTS, <nc. 2450 Atamo S.E./Atbuquerque, New Mexico 87106

PAGE TUENTY-FOUR COMPUTER NOTES - JULY, M7L

E A S U R ! N G) N T E R R U R T A C T ! V ! T V by NORMAN cRowFooi

Aitair User Devises interrupt Monitor

"PuAtug CCMA6 2. eompf^ttug
a. appftcattOK
tzt^g Ag. A^ta^A eompntgA, Zt 6g.came

to obtatM. egAtatu mga&uAg.-
mg.MtA ZfVtgAAM.pt act^vttt/. I
deu^i g.d and tmpfgmgnt&d a
ŝô t̂ aAg. mac^awtAH? tM whtcA CompntgA
MotM AgadeAa may bg tfitgAg^tM.

"BAtg^, a ^ouA-e^tp cxAeutt
MML& coMt^ueted on a pAototypg. eatd
and ZM^^AacttoM M)gAe added
to t^e g&M.gAof tMtgAAapt A gAu.teg

dgtatfg.d bgZoM̂ ."

StfiegAgZy,
^oAma^ C. CAon^oot
Lon̂ gZf Ob^gAuatoAt/
Ffag^ta^, AZ S6C0 7

Interrupt Monitor

General Description:
In order to accurately measure

certain time-dependent interrupt
parameters on a heavily-loaded Al-
tair 8800 system, the following
hardware/software additions were
made.

The hardware additions consist
of four integrated circuit (IC)
packages on a prototype board. The
function of this circuit is to latch
data written by the central process-
ing unit (CPU) to a specific memory
address area. This data is further
used to gate a 1 MHz pulse stream.

The software additions consist
of four additional instructions in-
serted into a general interrupt
routine. These instructions set
and reset the hardware data latch.

Together these additions allow
the accurate measurement of the
following parameters:

- interrupt rate;
- interrupt count;
- microseconds used to process
interrupts;

- percentage of total machine
cycles used to process interrupts;

- interrupt response latency time

Hardware Description:

Constructed on a prototype
card, the four-package circuit is
diagrammed in Figure 1. The circuit
responds to all memory writes with
address bit 15 high; that is, all
addresses greater than or equal to
X'8000'. The data is latched from
data line zero into IC C, a D-type
flip-flop. Test point A reflects
the status of this latch.

IC D continuously divides the
2 MHz clock to yield a 1 MHz
square wave. This 1 MHz pulse
stream is then gated to test point
S by the current setting of IC C.

Software Description:

The general interrupt service
routine is listed in Figures 2 and
3.

Figure 2 lists the memory
locations to which the Vectored
Interrupt (VI) board forces the CPU
to execute. A typical routine
(INT1), first pushes the B/C and
D/E register pairs, and then calls
the general interrupt service rou-
tine (LEVEL). Following the call
are three bytes of parameters for
LEVEL. First is the new level mask
work for the VI board, then two
bytes of the address of the specific
interrupt handling subroutine for
the level.

Figure 3 lists LEVEL, the
general interrupt service routine,
and BACK, the general return rou-
tine. LEVEL completes the saving
of registers, pushes the current
status of the VI board (CLMASK) and
sets the VI board up for the new
level. Note that at this time, all
previous context is pushed on the
stack and that interrupts may now
be enabled. The ';;;' notation in
the remarks field indicates instruc-
tions for which interrupts are
masked off.

LEVEL then fakes a call on the
specified handler subroutine, by
pushing the address of BACK and then
pushing the handler address. Fin-
ally a return (RET) instruction is
executed, causing a branch to the
handler subroutine.

The code at location BACK is
entered when the handler routine
executes a RET instruction, causing
the address pushed by LEVEL to be
returned to. First BACK restores
the VI board and location CLMASK
to their previous values. Then all
registers are restored and a RET
instruction is executed to return
control to the interrupted code.

This technique of handling
interrupt context changes allows
interrupts to be nested to an in-
definite level. In fact, interrupts
are allowed at all times, except
when the VI board is being updated.

In Figure 3, the four additional
instructions have been marked. They
simply store a '1' at location
X'8000' upon entry to LEVEL and set
X'8000' to '0' upon exiting BACK.

Measurement Procedure:

Referring to Figure 1, the
following procedures are used to
measure various timings and counts:

- interrupt rate - attach frequency
meter at test point A;

- interrupt count - attach event
counter at test point A;

- microseconds used to process
interrupts - attach event
counter at test point B;

- interrupt response latency time -
trigger 'scope on rise of CPU
line PINT, measure time to
rise of status line SINTA. The
lines PINT and SINTA are avail-
able on the MITS bus.

Doubtless, there are many other
measurements that may be made with
this relatively simple setup.

General Suggestions and Comments:

Only half of IC C, the 7474
latch, is used. Another data line
may be connected to the unused half
for adding further software "hooks"
for more complicated measurements.
Additionally, more gating logic
might be added to combine several
latch outputs. For instance, this
could be used to determine how
often the CPU is interrupted from
some specific code or interrupt
level.

The Power On Clear (POC), bus
line 99, was tied to Reset, line
75, to cause the CPU to automati-
cally start at location zero when
power is first applied to the ma-
chine. Obviously, some type of
involatile memory is required to
enable this feature to work proper-
ly. And logically, one might
wonder why this minor alteration
was not included in the original
MITS design.

We also found a subtle problem
with the Intel 8214 priority inter-
rupt control chip, used on the VI
board. While it is described as a
latch, it is clocked at 2 MHz and
thus appears as a buffer. Too
short an interrupt request signal
causes the 8214 to develop a level
zero interrupt, rather than the
one originally requested. The
interrupt request line must be
held until the CPU grants the
interrupt. Beware also of holding
the line too long, as multiple
interrupts will be generated.

A final point is that the
MITS engineers, in their infinite
wisdom, have reversed the level
numbers on the VI board going into
the 8214. This explains the appa-
rent reversal of the VI mask bytes
in Figure 2.

This work is an outgrowth of
a larger project which has been sup-
ported in part by the National Sci-
ence Foundation grant AST 73-05269
A01 to the Lowell Observatory.

-continued-

COMPUTER NOTES - JULY- 117b PAGE NINETEEN

PWR r^ 1 2
SMO

SMEMR

SOUT

r-1 A] 5

8885

DO0

Vcc

D Q

R S

A

02

t-JJ ^
LRj CLEAR
L3j„ 7473 ^K c

12

L
INTERRUPT

12 8880

1MHz
1MHz HHILE IN
INTERRUPT

GND Vcc

POC RESET pri A 8885 7 14

B 8880 7 14

FORCE RESET AT C 7474 11 4

POWER ON D 7473 11 4

FIGURE 1 - HARDWARE

FIGURE 2: HARDWARE INTERRUPT LEVELS

INTO
RESET

INT1

INT4

INT5

^

INT6

-INTERRUPT LEVEL 8
ORG 0
LKI SP, STACK
EQU INT9
JUP LEVELS
-INTERRUPT LEVEL 1
ORG
PUSH
PUSH
CALL
OCT
DEF

O' 10'
B
D
LEVEL
316
LEVEL1

-INTERRUPT LEVEL 2

-INTERRUPT LEVEL
ORG
PUSH
PUSH
CALL
OCT
DEF

0'48'
B
D
LEVEL
313
LEVEL4

-INTERRUPT LEVEL 5
ORG
PUSH
PUSH
CALL
OCT
DEF

0'50'
B
D
LEVEL
312
LEVELS

— INTERRUPT LEVEL 6
ORG
PUSH
PUSH
CALL
OCT
DEF

0' 60'
B
D
LEVEL
311
LKVEL6

-INTERRUPT LEVEL 7
INT?

ORG
PUSH
PUSH
CALL
OCT
DEF

0 7 0 '
B
D
LEVEL 319
LEVEL?

ALWAYS AT LOC 0
SETUP STACK POINTER
RESTART POINT
CONTINUE WITH STARTUP

HARDWARE FIXED LOCATION
SAVE B/E REG PAIR
SAVE D/E REG PAIR
CONTINUE WITH COMMON CODE
NEW LEVEL MASK WORD
ADDRESS OF HANDLER SUBROUTINE

ORG O'20' HARDWARE FIXED LOCATION
INT2 PUSH B { SAVE B/E REC PAIR

PUSH D SAVE D/E REG PAIR
CALL LEVEL CONTINUE WITH COMMON CODE
OCT 315 NEW LEVEL MASK WORD
DEF LEVELS : ADDRESS OF HANDLER SUBROUTINE

x — — INTERRUPT LEVEL 3
ORG O'30' HARDWARE FIXED LOCATION

INT3 PUSH B SAVE B/E REG PAIR
PUSH D SAVE D/E REG PAIR
CALL LEVEL CONTINUE WITH COMMON CODE
OCT 314 NEW LEVEL MASK WORD
DEF LEVELS ADDRESS OF HANDLER SUBROUTINE

HARDWARE FIXED LOCATION
SAVE B/E REG PAIR
SAVE D/E REG PAIR
CONTINUE WITH COMMON CODE
NEW LEVEL MASK WORD
ADDRESS OF HANDLER SUBROUTINE

HARDWARE FIXED LOCATION
SAVE B/E REG PAIR
SAVE D/E REG PAIR
CONTINUE WITH COMMON CODE
NEW LEVEL MASK WORD
ADDRESS OF HANDLER SUBROUTINE

HARDWARE FIXED LOCATION
SAVE B/E REC PAIR
SAVE D/E REG PAIR
CONTINUE WITH COMMON CODE
NEW LEVEL MASK WORD
ADDRESS OF HANDLER SUBROUTINE

HARDWARE FIXED LOCATION
SAVE B/E REG PAIR
SAVE D/E REG PAIR
CONTINUE WITH COMMON CODE
NEW LEVEL MASK WORD
[ADDRESS OF HANDLER SUBROUTINE

Customer Service News -continued from page 2

FIGURE 3:

GENERAL INTERRUPT SERVICE ROUTINE, COMPLETE STACK FRAME
AND UPDATE CURRENT LEVEL ON VI BOARD
GENERAL FORK OF THE CONTEXT STACK FRAME

ADDRESS OF
OLD CLMASK
PSW
H/L
D/E
B/C
PC

*
*
LEVEL XTEL

PUSH PSW
f MVI A, 1
1 STA IHARK

*

LDA
PUSH
MOV
STA
OUT
EI

CLMASK
PSW
A,M
CLMASK
VI

;SAVE B/L REG PAIR + GET FARM LIST
:SAVE PSW/A REG PAIR
;SIGNAL WE'RE IN AN INTERRUPT
;TO EXTERNAL COUNTER BOARD
;GET CURRENT LEVEL MASK
;SAVE AS PART OF STACK CONTEXT
!READ NEW LEVEL MASK
{RETAIN FOR NEXT STACK FRAME
:;INFORM VI BOARD
!;OPEN UP FOR MORE INTERRUPTS

-NOW FAKE SUBROUTINE CALL ON SPECIFIED LEVEL SUBROUTINE
LXI B BACK {{POINT TO RETURN POINT
PUSH B FORCE ONTO STACK AS A RETURN
INX H BUMP PARM LIST POINTER
MOV E, M READ FIRST BYTE OF ADDRESS
INX H BUMP TO SECOND BYTE
MOV D, M READ SECOND BYTE
PUSH D SAVE JUMP ADDRESS
RET x

BACK

THEN GO TO THE ROUTINE
-RETURN FROM INTERRUPT ROUTINE, RESTORE STACK FRAME

f

DI
POP
STA
OUT
EI

PSW
CLMASK
VI

XRA STA
POP
POP
POP
POP
RET

A I HARK .
PSW
H
D
B

;;KEEP IT 8U)ET FOR A COUPLE OF CYCLES
;:PULL BACK OLD LEVEL MASK
!{RETAIN FOR NEXT INTERRUPT
[[INFORM VI BOARD
{;OPEN UP NOW, THICKLY STUFF'S DONE
;;CLEAR A REG
SIGNAL THAT WE'RE THROUGH
RESTORE PSW/A REG PAIR
RESTORE H/L REG PAIR
RESTORE D/E REG PAIR
RESTORE B/C REG PAIR
THEN EXIT THIS INTERRUPT LEVEL

(additional instructions marked '*')

store location is: Computer Shack/3120 San Mateo NE/
Albuquerque, NM/505-883-8282.

BAUDOT HARDWARE OPTION
We have received very little response from our

Altair 680b owners regarding the possible marketing
of a Baudot level conversion and isolation circuit
kit. If you are interested in this kit for your 680b,
please drop a post card to my attention. I'll let
you know the results of this poll next month.

SOFTWARE LIBRARY
Questions have arisen as to what you receive when

you order a program from the software library. For
the price listed in the Software Library Update, you
will receive a copy of the listing ONLY.

There are four programs in the library which we
offer on paper tape. (We do not offer card decks or
cassette tapes for these programs.) They are:

#521751 8800 Cross Assembler
#1123751 8800 Simulator
#1203751 8800 Mini-Monitor
#5-24-763 6800 Cross Assembler

The price of the listings for the above four pro-
grams is $15.00 each. If you wish paper tape on
these programs, the price is also $15.00 each. If
you wish both listing and paper tape, the cost is
$30.00. Please specify listing or paper tape when
ordering the above programs. If you do not specify,
you will be shipped a listing.

REMINDERS
To obtain faster delivery on your kit orders,

please send money orders or cashiers checks. We do
have to allow a 3 week delay for processing a per-
sonal check.

If you are among our many foreign customers and
would like to expedite your orders by sending in an
international money order, please be advised that if
the money order is not made payable through a United
States bank, then a 3 to 7 week delay occurs while
it is processed through the foreign currency exchange
clearing house. If your international money orders
are made payable through a US bank, then this will
definitely expedite delivery time.

t m a g i n e a m i c r o c o m p u t e r

Imagine a microcomputer with aii the design savvy, ruggedness, and sophistication of the best minicomputers.

imagine a microcomputer supported by dozens of interface, memory, and processor option boards. One that
can be interfaced to an indefinite number of peripherai devices inciuding duai fioppy discs, CRT's, tine printers,
cassette recorders, video dispiays, paper tape readers, teieprinters, piotters, and custom devices.

imagine a microcomputer supported by extensive software inciuding Extended BASiC, Disk BASiC, DOS and

a compiete iibrary of business, deveiopmentai, and industria! programs.

imagine a microcomputer that wiii do everything a mini wiii do, on!y at a fraction of the cost.

You are imagining the Aitair ^ 8800b. The Aitair 8800b is here today, and it may very wei! be the

mainframe of the 70 s.

The Aitair 8800b is a second generation design of the most popuiar microcomputer in the fieid, the Aitair 8800

Buiit around the 8800A microprocessor, the Aitair 8800b is an open ended machine that is compatibie with aii

Aitair 8800 hardware and software, it can be configured to match most any system need.

MiTS' piug-in compatibie boards for the Aitair 8800b now inciude: 4K static memory, 4K dynamic memory,

16K static memory, muiti-port seriai interface, muiti-port paraiiei interface, audio cassette record interface,

vectored interrupt, reai time ciock, PROM board, muitipiexer, A /D convertor, extender card, disc controiier,

and iine printer interface.

MiTS' per iphera l for the Aitair 8800b inciude the Aitair Fioppy Disc, Aitair Line Printer, teietypewriters, and

the soon-to-be-announced Aitair CRT terminai.

introductory prices for the Aitair 8800b are $840 for a kit with compiete assembiy instructions, and $1100 for
an assembied unit. Compiete documentation, membership into the Aitair Users Ciub, subscription to "Computer
Notes" access to the Aitair Software Library, and a copy of Charies J. Sippi's Microcomputer Dictionary are
inciuded. BankAmericard or Master Charge accepted for maii order saies. inciude $8 for postage and handting.

Shouidn't you know more about the Aitair 8800b? Send for our free Aitair information Package, or contact
one of our many retaii Aitair Computer Centers.

MiTS, inc. 1976/2450 Atamo S.E./Albuquerque, N e w Mexico 87106

Redesigned front panel , Totally synchro-

nous logic design. Same switch and LED

arrangement as original Aitair 8 8 0 0 .

New back-lit Dural ith (laminated plastic

and mylar, bonded to a l um inum) dress

panel with multi-color graphics. New

longer, fiat toggle switches. Five new

funct ions stored on front panel P R O M

inc lud ing: DISPLAY ACCUMULATOR (dis-

plays contents of accumulator) , LOAD

ACCUMULATOR (loads contents of the

8 data switches (A7-A0) into accumulator);

OUTPUT ACCUMULATOR (Outputs con-

ten t s of a c c u m u l a t o r to I / O d ev i c e

a d d r e s s e d by the u p p e r 8 a d d r e s s

switches), INPUT ACCUMULATOR (in-

puts to the accumula tor from the I /O

device), and S L O W (causes program

execution at a rate of about 5 cycles per

second—for program debugg ing) .

Full 18 slot motherboard .

R u g g e d , c o m m e r c i a l g r a d e O p t i m a

cabinet .

New front panel interface board buffers

all lines to and from 8 8 0 0 b bus.

Two, 3 4 conductor r ibbon cable assem-

blies. Connects front panel board to front

pane! interface board. El iminates need

for compl ica ted front pane l /bus wir ing .

New, heavy duty power supply + 8 volts

at 18 amps, +18 volts at 2 amps , 18 volts

at 2 amps . 110 volt or 2 2 0 volt operat ion

(5 0 / 6 0 Hz). Primary tapped for either

high or low line operat ion.

New CPU board with 8 0 8 0 A micro-

processor and Intel 8 2 2 4 clock generator

and 8216 bus drivers. Clock pulse widths

and phasing as well as frequency are

crystal control led. Compat ib le with all

c u r r e n t A l t a i r 8 8 0 0 s o f t w a r e a n d

hardware.

a!ta)y 8800 b
0 &

Please aiiow up to 60 days for detivery Price, specifications subject to change.

PAGE TUENTY-FOUR COMPUTER NOTES - JULY, M7L

AssemMmg from the Edit Buffer
with Pe&oge M By Mark Chamberlin

The typical program develop-
ment process usually involves the
following steps:

1. Load the Editor.

2. Use the Editor to enter the
program into the Edit Buffer.

3. Output the program from the
Edit Buffer to an I/O device
(e.g. paper tape or cassette
tape).

4. Load the Assembler.

5. Assemble the program from the
tape.

However, to expedite the pro-
gram development procedure, Package
II allows the user to assemble a
program directly from the Edit
Buffer. This saves the time spent
outputting the program from the
Edit Buffer to an I/O device and
reading it back into the Assembler.

The steps outlined below con-
stitute a general procedure for
creating a program file using the
Editor and then using the Assembler
to assemble the program directly -
from the Edit Buffer.

Step 1:

Load the Monitor.

Step 2:

Load the Editor.

Step 3:

Type E to return to the Mon-
itor.

Step 4:

Use the Monitor's DEP command
to modify the contents of locations
5124-5125Qand5530-SS31Q. These
locations contain the starting and
ending addresses of the Edit Buffer,
respectively. This step is neces-
sary because the default location
of the Edit Buffer is directly
above the Editor, and Version 2 of
the Assembler (AM2) loads directly
above the Editor. In the sample
program given here ("ASC"), the
Edit Buffer has been moved to start
at 12K and end at 16K-1. Note
that 12K is 30000Q which is
0011000000000000 in binary.

Split into 8 bit bytes, this ad-
dress becomes:

00110000 00000000

Converting the bytes to octal
yields:

00 / 110 / 000

0 6 0
00 / 000 / 000

0 0 0

Thus, the high order byte is 060
(octal) and the low order byte is
000 (octal).

The 8080 must always have
addresses stored with the low order
byte first and the high order byte
stored second. Therefore, the com-
mand :

DEP 5124

Memory Map

When using the Editor and Ver-
sion 2 of the Assembler in the
fashion.outlined above, it is nec-
essary to plan memory use carefully.
Below is the memory map for the
above example.

high
order
byte

low
order
byte

Step 7:

Type the command OPN FIL,EB,A.
This opens the symbolic device
"FIL" to the Edit Buffer in ASCII
mode.

Step 8:

Load and run Version 2 of
the Assembler (AM2).

Step 9:

Type FILE to tell the Assem-
bler to read and assemble the pro-
gram from the symbolic device FIL.
(In this case, the contents of
the Edit Buffer.)

Note that the last line of
the program is a RUN directive
which tells the assembler to execute
the code that it assembled.

The sample program "ASC" ac-
cepts characters from the Teletype
and prints the ASCII value of the
character in octal. Control is
returned to the Monitor when a $
is typed.

60 377777Q*
^ Z (control Z - not echoed) Edit Buffer
is used to change the starting ad-
dress of the Edit Buffer. Similar-
ly, the ending address of the buf-
fer is changed (see sample).

30000Q* is used to change the starting ad-
dress of the Edit Buffer. Similar-
ly, the ending address of the buf-
fer is changed (see sample).

30000Q*

User Program Area

24000Q* 24000Q*
Step 5: Assembler Symbol Table

Restart the Editor by typing 17041Q

11S53Q

EDT and enter the program into the
Edit Buffer. (See the Package 11
Manual for details on the use of the
Editor.)

17041Q

11S53Q

Assembler (AM2)

17041Q

11S53Q
Step 6: Editor (EDT)

When the program has been 5100Q entered, type E to return to the
Monitor.

5100Q

Monitor

*User defined addresses

Memory Map
for Program Development

Reentering the Editor

Should it ever be necessary
to reenter the Editor to modify
the text left in the Edit Buffer
from the last edit session, the
R parameter should be used.

For example, to modify the
sample program "ASC" after re-
turning to the Monitor, the com-
mand EDT (R) would be used to
restart the Editor.

Do not use the command EDT to
reenter the Editor or the contents
-of the Edit Buffer will be lost.

In other words, use the com-
mand EDT to create a new program
file, and use the command EDT (R)
to modify a program that is al-
ready in the Edit Buffer.

See next page for Sample Program

COMPUTER NOTES - JULY- 117b PAGE NINETEEN

JU!Y SOFTVMRE CONTEST
Development Procedure for Sample

Program "ASC"

Development Procedure for Sample Program "ASC"

?0PN ABS.AC
?EDT

START INPUT
*E

?DEP 5124

60
?DEP 5530

377
77

?EDT
START INPUT

ORG 24000Q ;Set location counter
OUTCH: DB 1 ;Use LXI trick to get

;around print space entry point
OUTS: MVI A," " ;Load A with a space

PUSH PSW ;Save char to be output
OUTCH1 : IN 0 ;TTY ready?

RLC
JC OUTCH1 ;No, try again
POP PSW ;Retrieve char to be output
OUT 1 ;Yes, send the char

GETCAR:
RET ;Return to calling program

GETCAR: IN 0 ;Anything typed?
RCC
JC GETCAR ;No, check again
IN 1 ;Yes, read the char
CALL OUTCH ;Echo the char
ANI 177Q ;Strip the parity bit
CPI " $ " ;Should we quit?
JZ MON ;If so, return to monitor
MOV L,A ;Copy char into L
XRA A ;Clear A to clear H
MOV H,A
CALL OUTS ;Send out a space
MVI D,3 initialize digit counter
JMP FIRTWO ;Print digit containing high

;0rder two bits
NXTDIG: DAD H ;Shift left 1 bit
FIRTWO: DAD H

DAD H
MOV A,H ;Move octal digit to A
ANI 7 ;Use low order three only
ORI 60Q ;Add in ASCII 0
CALL OUTCH ;Print out the digit
DCR D ;Decrement the digit counter
JNZ NXTDIG ;More digits to go
CALL OUTS ;Send out space and
JMP GETCAR ;go get next character
BEG GETCAR ;Execution begins at GETCAR
END ASC

;Execution begins at GETCAR

*E RUN ASC
?0PN FIL,EB,A

- REVISION 3.0
?AM<. (S)

ALTAIR LOADING ASSEMBLER

ASM
FILE
UNDEFINED SYMBOLS

SYMBOL TABLE

$ 024100
OUTCH 024000
OUTS 024001
0UTCH1 024004
GETCAR 024016
FIRTWO 024054
NXTDIG 024053

A 101 B 102 C 103 D 104 E 105 F 106 G 107 H 110 $

correction

"Software Initialization of Parallel
I and Serial I/O Boards", Computer
Notes, June 1976

Note at the end of the I/O
article it was stated that an inter-
rupt could not occur in the HALT
state if the new 1/0 boards are
used. This is true only on the
88-4PI0. The 88-2SI0 works normally
in the HALT condition.

By Drew Einhorn

This was a slow month for the
Software Contest. There were only
eleven entries, but what was lacking
in quantity was more than made up
for with quality.

This month's first place winner
was an easy choice. I will even
predict that it will be a strong
entry in the best of the year con-
test. You guessed it - Jim Gerow
wins again with his 8800 Assembler
written in Altair BASIC.

Second place went to Jim
Blackstone for an 8080 Debug
Package.

Third place was a difficult
choice, since there were two people
working independently on similar
problems. I finally decided to
award a tie between James Hansen
and Jim Wiggins (see below).

Because there were only two
subroutines entered this month and
both were written by Alan Miller,
I decided the lack of competition
in this category did not justify
naming subroutine winners this
time.

NOTE: The library is already
over-stocked with number guessing
games, ASCII to Baudot converters
and programs to punch and load
Baudot paper tapes. Therefore,
beginning in August, we will no
longer accept any more library pro-
grams in these three categories.

FIRST PLACE MAJOR PROGRAM
#7-8-761
Author: Jim Gerow
Length: 300 lines BASIC
Title: 8800 Assembler
Altair 8800 Assembler written in
Altair BASIC.

SECOND PLACE MAJOR PROGRAM
#7-7-761
Author: Jim Blackstone
Length: 635 bytes (hex notation)
Title: 8080 Debug Package
Access and modify memory
Copy memory from one block to
another

Dump memory to Teletype printer
Fill memory block
Go To program
Print registers and flags

SOFTWARE

THIRD PLACE MAJOR PROGRAM TIE
#6-18-761
Author: James B. Hansen
Length: 215 bytes
Title: ASCII to Baudot Translate

Routine

#6-22-761
Author: Jim Wiggins
Length: 106 bytes

186 bytes
Title: Tape Load-Octal TLQ

Tape Dump-Octal TDQ
for Baudot Teletypes

#6-25-761
Author: Alan R. Miller
Length: 12 lines BASIC
Title: "ERF"
Evaluates the error function. j
#6-25-762
Author: Alan R. Miller
Length: 4 lines BASIC
Title: GAMMA
Evaluates the Gamma Function.

#6-28-761
Author: Jim Salem
Length: 71 bytes
Title: Guess 1
Random number guessing game.

#6-28-762
Author: Jim Salem
Length: 88 bytes
Title: Guess 2
Random number guessing game.

#6-29-761
Author: Alan R. Miller
Length: 7 lines BASIC
Title: "DROOT" Double
Precision square root.

#7-6-761
Author: Alan R. Miller
Length: 9 lines BASIC
Title: BASIC Subroutine Newton
Newton's method for finding solution
to 8(X) = 0.

Jewelry Plant -continued from page 1

The total cost of this Altair
business system is approximately
$16,000. If you are interested in
hearing more, you can contact Mr.
Rezac at the following address:

Applied Computer Research Systems
130 Sun Valley Road
Toms Rivers, New Jersey

1% g o u a n uj-HtauaZ oA

-teAaa^ng appZ^ca^xon ^OA t/cuA
A ^ t a x A , a n d LL6 a d g ^ c A ^ p ^ t o n .

t/OUA M^ t ^ . P^o^o-A 'LR p M A ^ b f e . ,

<md ^ Zn C/N t^e
bang-a^t o^teA Attach u^aAA.

-Ed^toA

PAGE TUENTY-FOUR COMPUTER NOTES - JULY, M7L

New Clubs:

Portland Computer Society
Mike Enkelis
503-246-4616

. . . was listed as nameless in
our last issue.

Dwight Instrument Company is spon-
soring the formation of a new club:
The Northern New Jersey Amateur
Computer Group. Membership is open
to everyone at $5.00 yearly. Meet-
ings will be held on the second
Friday of each month beginning at
6:30 p.m., at Fairleigh Dickinson
University, Rutherford Campus,
Becton Hall. First meeting is
September 10, 1976. For more in-
formation contact Beth at:

Dwight Instrument Company
201-438-3334
593 New York Avenue
Lyndhurst, NJ 07071

Interested in starting new
clubs:

Dan Schless
#6 Marquette Dr.
Florissant, MO 63031
(St. Louis area)

Dr. Mike Allen
University of North Carolina
Charlotte, NC

Allen Grayson
6908 Foxworth Dr.
Charlotte, NC 28211

Aitair Users
Kenneth L. Bowen
Box 1711
Nellis AFB, NV 89191
Larry Simon
94 Tilley Road
Sault Ste. Marie,
Canada P6B 3Y9

Ontario

Peter Graulich
1157 Concord Dr.
Haddonfield, NJ 08033
Philip A. Cohlin Jr.
PO Box 8
Sebastopol, CA 95472

Richard P. Brennan
601 South Knight
Park Ridge, IL 60068
Steve Grumette
Omega Products
921 N. La Jolla Ave.
Los Angeles, CA 90046

Steve Agnew
804 104th Ave. S.W.
Calgary
Wirt Atmar
PO Box 4691
University Park,

I MM.ote t^&S pAogAam in MITS
3K BASIC, and Anns on my 72K
ALTAIR ggOO.

I don't t̂ tn̂ s. t^at anyone
gat AtcA ^etLcng a acmpateA-

Zzad btoA^yt^m c^iaAt (at feast
at t^e aaeAa' feuefj, bat
I t^tnb tt can be o&ed as a means

<s&.OM?tng t&at onA eompatatA can
do and mtg^t aA a pAcgAam-
mtng example ^oA t^e novice pAo-
gAammeA Zt'4 po^^Zbfy good
%0A a Za^^t ^Aom moAe expgA-
^enaed "bZt-dtddtgAA").

Maff, enoag^ Aambftngf FoA
tu^at Zt'<& woAt^t, ^eAe'A my veAi^on

a b^oA^yt/un pAogAam.

T^tan^ you,
WenAy AAnoZd, JA.

(EdttoA'A note: GAeat! j

LIST

1 LET R1 = (360/33)/57.2958
3 LET R2 = (360/28)/57.2958
3 LET R3 = (360/23)/57.2958
50 DATA O?31?59?90?120?151?181?212?243?273?304?334
51 DATA 365
60 DIM L!(503
75 RESTORE
100 PRINT 'ENTER BIRTHDATE?CURRENT DATE (YYMMDB)*
125 LET PI = 0
150 LET J6 = 1
200 INPUT B1?B2
205 LET D9 = D2
206 PRINT 'ENTER DURATION'
207 INPUT J5
210 PRINT 'ENTER NAME OF SUBJECT*
220 INPUT 63
230 GOSUB 12000
300 IF I<1 > 32 THEN PRINT 'INVALID DATES':GOTO 200
400 LET XI = B1
500 GOSUB 1000
550 LET Y1 = X2!LET Ml = X3:L.ET B1 X4
600 LET XI = I'2
625 GOSUB 1000
650 LET Y2 ^ X2!LET M2 = X3!LET B2 = X4
BOO GOTO 4000 1000 LET X2 = INT<X1/10000)

INT<X1/100)-(X2*100)
Xl-(<X3*100)+<X2^10000))

(INK(Y2-1?^365.25)-INK(Y1-1)^365.

1100 LET X3
1200 LET X4
1300 RETURN
4000 LET B4
4100 FOR I = 1 TO HI
4200 READ J1
4300 NEXT I
4400 RESTORE
4500 FOR I = 1 TO M2
4600 READ J2
4700 NEXT I
4800 LET J1 = Jl+Bl
4900 LET J2 = J2+B2
5000 LET LI = (Yl/4)-<:iNKYl/4))
5100 IF LI = 0 THEN LET LI =-- i:GOTO
5200 LET LI = 0
5300 LET.L2 = (Y2/4)-(INT(Y2/4))
5400 IF L2 = 0 THEN LET L.2 - 1!GOTO
5500 LET L2 0
5600 IF Ml > 2 THEN LET J1 = Jl+Li
5700 IF M2 > 2 THEN LET J2 - J2+L2
3800 LET B4 = D4+J2-J1
6000 LET D1 = (B4-(INKB4/33)t!33))
6100 LET D2 = (D4-(INKD4/28)^28))
6200 LET B3 = <D4-(INKB4/23)*23))
6300 FOR L3 = 1 TO 50
6350 FOR I = 1 TO 50
6360 LET m i) = * *
6370 NEXT I
6400 LET X = SIN(R1*B1)
65C0 LET Y = SIN(R2^D2)
6600 LET Z ^ SIN(R3*D3)
6700 LET L$(X*20+25)
6800 LET Li(Y*20+25)
6900 LET L$(Z*20+25)
A950 PRINT *: ':

5300

5600

7000 FOR I = 1 TO 50
7050 LET L3<25) = *!'
7100 PRINT L$(I);
7200 NEXT I
7205 PRINT *:
7207 GOSUB 10000:PRINT B5? =
7210 IF B1 =
7215 IF B1 =
7220 IF B2 =
7225 IF D2 =
7230 IF B3 ^
7235 IF B3 ^
7240 IF C =
7250 PRINT
7300 LET HI
7400 LET B2
7500 LET D3

0 THEN LET C =
16 THEN LET C
0 THEN LET C -
14 THEN LET C
0 THEN LET C =
12 THEN LET C

i THEN LET C =

1!PRINT '
=: i: PRINT
U P R I N T '

- i:PRINT
1!PRINT '

- i:PRINT 0

* '

+ '

' +

3))

Bl + 1
B2+1
B3+1

7600 IF B1 = 33 THEN LET B1 " 0
7700 IF B2 = 28 THEN LET B2 = 0
7800 IF B3 = 23 THEN LET B3 = 0
7900 LET J2 = J2+1
7920 LET J6 = J6+1
7950 IF J5<J6 GOTO 8300
8000 NEXT L3
8050 LET PI = Pl+1
8100 GOSUB 14500
8125 P R I N K P R I N T
8150 GOSUB 12000
8200 GOTO 6300
8300 LET PI - Pl+1
8350 GOSUB 14500
8400 FOR I := 1 TO 60:pRINT:NEXT I
8500 GOTO 75
10000 RESTORE
10100 FOR I = 1 TO 13
10150 LET J4 = J3
10200 REAB J3
10250 IF J2 > 59 THEN LET '3 - J3+L2
10300 IF J2 <=J3 GOTO .11000
10400 NEXT I
10500 LET Y2 - Y2+1
10510 LET L2 = <Y2/4)-<INT<Y2/4))
10520 IF L2 - 0 THEM LET L2 <= iiBOTO 10600
10530 LET L2 0
10600 LET J2 J2-365
10700 GOTO 10000
11000 LET M2 ^ 1-1
11100 LET B6 J2-J4
11150 IF J2 - 60 THEN LET D6 - B6+L2
11200 LET B5 == Y2^10000+(M2^100)+B6
11300 RETURN
12000 FOR I = 1 TO 73
12100 PRINT '-':
12200 NEXT I
12250 PRINT
12300 PRINT *: COMPUTERIZED STUDY OF BI0RHYTHM.1C
12400 GOSUB 13600 CURVES'?
12500 PRINT "{ SUBJECT?
12600 GOSUB 13600
12700 PRINT '! DATE OF STUDY - '?B9?' - DURATION-:

' DAYS'$
12800 GOSUB 13600

1 TO 75!PRINT
1 TO 75:PRINT

12810 FOR I
13200 FOR I
13210 PRINT
13250 PRINT

';:NEXT î 'RiNT
'?:NEXT I

' :

HISH
BATE . . .

1 TO 7:

! nu
13260 PRIMT
13400 PRINT
13500 FOR I
13510 PRINT
13520 NEXT I
13530 PRINT
13540 RETURN
13600 LET J ;= 75-P0S(X)
13700 FOR I ^ 1 TO J-l
13800 PRINT -
13900 NEXT I
14000 PRINT
14100 RETURN
14500 FOR I
14600 PRINT

: -;

! CRITICAL'?

1 TO 75:PRINT

14700 GOSUB 13600
R - INTELLEE

"?!NEXT i:pRIMT
.L ABILITY? AMBITION.'

' + *

NM 88003

14800 PRINT *: + = SENSIBILITY- NERVES? MOOD? CREATIVE ABILITY.'
14900 GOSUB 13600
15000 PRINT *{ . = PHYSICAL STRENGTH; ENDURANCE? "CONFIDENCE."!
.15100 GOSUB 13600
15150 FOR .1 - 1 TO 75:?RINT '-'?:NEXT I {PRINT
13200 PRINT TAB(3i;'?*PAGE '?P1
15400 RETURN
OK
RUN
ENTER BIRTHDATE?CURRENT DATE (YYMMBD)
? 4 .10906? 760524
ENTER DURATION
? 112
ENTER NAME OF SUBJECT
? HENRY 0, ARNOLD JR.

COMPUTER MOTES - JULYi lT7b PAGE ELEVEN

COMPUTERIZED STUDY OF BIORHYTHMIC CURVES
SUBJECT; HENRY 0. ARNOLD JR.
DATE OF STUDY - 760524 - DURATION 112 DAYS

LOU HIGH

: COMPUTERIZED STUDY OF BIORHYTHMIC CURVES
: SUBJECT; HENRY 0. ARNOLD JR.
: DATE OF STUDY - 760524 - DURATION 112 HAYS

DATE CRITICAL!

760524
760525

+ K 760526
+ $ 760527

+ 760528
760529 +

+ 3 760530
760531

* + 760601
% + 760602 *

+ 760603
* + 760604

* + 760605
* + 760606

+ 760607
* + 760608

* + 760609
* + 760610
* + . 760611
* 760612 +
* + 760613

* + . 760614
*+ 760615

+ * 760616
+ * 760617

+ * 760618
+ 760619
+ 760620
+ * 760621

+ $ 760622
+ * 760623

+ * 760624
+ 760625

760626 +
+ * 760627

+ * 76062S
+ * 760629

+ * 760630
* + 760701

+ 760702
+ 760703

- + 760704
* + 760705 *

X 760706
* + 760707

* 4 . 760703
* + 760709

* 760710 +
* + 760711

* + - 760712

* = INTELLECTUAL ABILITY; AMBITION.
+ = SENSIBILITY; NERVES; MOOD; CREATIVE ABILITY.
- = PHYSICAL STRENGTH; ENDURANCE; CONFIDENCE.

LOU HIGH : DATE : CRITICAL:

X + , 760713
X + 760714
*+ 760715
+* 760716
+ * 760717
+ . * 760718

* 760719
+ * 760720

+ * 760721
+ 760722 *

+ 760723
* 760724

+ * 760725
+ * 760726

+ * 760727
+ X 760728

+* 760729 . + 760730
760731
760801
760802 „ + . 760803
760804
760805 . +* 760806
760807 X + . . + * 760808

+ * 760809
+ $ 760810 . + * 760811

.+ * 760812
760813
760814

+ 760815
*+ 760816
* + 760817
X + 760818

* + 760819
X + 760820

* , 760821 +
760822

* + 760823
+ 760824

X + . 760825
X . + 760826

* . + 760827
* + 760828

* + 760829
+ 760830

'
+ * 760831

INTELLECTUAL ABILITY; AMBITION.
SENSIBILITY; NERVES; MOOD; CREATIVE ABILITY.
PHYSICAL STRENGTH; ENDURANCE; CONFIDENCE.

m e e t B ^ ! Ktshn
Cue. aAM. Zn MIT.S' fead-

gAanip ^ai a&ua^ been g. undent Zi
cmtomeA û.ppoAt. In an to
matntaZn t^is ZaadeAa^p and ex-
pand OUA ̂ gAvteM to ôa., ouA
tomgAA and pot&ntta&
t^e nan) po^t o^ Ĉ Ltê Apptteat^on^
EngtneeA been cAeated and

E. ^uAn III ^ been ap-
pointed to t^at po^t.

BZZZ be nvtittng AeguZoAtt/
tn t^eie pageA.

APP MOTES
First let me say hello and tell

you that I'm happy to have this op-
portunity to write to you.

Next, for those of you who
don't know what an applications
engineer is, let me explain.

An applications engineer
works out uses for a given pro-
duct. He helps customers put
their equipment to work doing
whatever it is that they wish to
accomplish.

So, I'll ask you: "What
would you like your Altair to do?"
If there are particular applica-
tions you would like to find out
about, write to me here at MITS.

Those applications that seem
most popular or most interesting
I'll try to publish in Computer
Notes in the coming months. Also
if you have a system up and running
doing something that you would like
the world to know about, write me.
I'll see if I can include it in my
column. If you have pictures
(black and white) or diagrams that
would help explain your system,
send them too.

I am anxious to find out what
you want your Altairs to do and
look forward to helping you in any
way I can.

William E. Kuhn III,
Chief Applications Engineer

COMPUTERIZED STUDY OF BIORHYTHMIC CURVES
SUBJECT; HENRY 0. ARNOLD JR.
DATE OF STUDY - 760524 - DURATION 112 DAYS

LOU HIGH
+

HATE

760901
760902
760903
760904
760905
760906
760907
760908
760P09
760910
760911
760912

: CRITICAL:

* = INTELLECTUAL ABILITY; AMBITION.
+ = SENSIBILITY; NERVES; MOOD; CREATIVE ABILITY.
. = PHYSICAL STRENGTH; ENDURANCE; CONFIDENCE.

PAGE TUENTY-FOUR COMPUTER NOTES - JULY, M7L

TROUBLESHOMMB MO
In comparison to MITS' older

I/O boards, the 2SI0 Board may seem
far more complex due to its program-
ing requirement. In the earlier I/O
boards, the information containing
number of stop bits, type of parity,
and number of bits per character
was hardwired. Reset was also pro-
vided by hardware. In the 2SI0,
all of this information is supplied
through software. This difference
only means that troubleshooting
will use both software and hardware.

Special considerations:

If DATA CARRY DETECT and
CLEAR TO SEND are not used but are
connected through the circuitry to
the Molex connectors, they must be
set to a high level. This is done
by jumpering Sl-1 and Sl-2 (or S2-1
and S2-2 for,second port) of Molex
pins to +5v. (Earlier errata sheet
on jumping to ground should be ig-
nored.) These jumpers are neces-
sary for RS-232 level interfacing.
If these lines are not connected,
jumper the D and E pads to ground
(Dl, D2, El, E2).

When using a 2SI0 to load soft-
ware, start the bootstrap before
starting the loading device. The
2SI0's ACIA must be reset before it
will accept any data. When assem-
bling the 2SI0 board, IC J is in-
stalled only if the 2SI0 is to be
used for 2 ports. The 2SI0 requires
the 3.2 version or later of BASIC
and must be addressed at Location
20. Switch A-ll must be up for
operation of the 2SI0 at Location
20. Use the echo routine (page
101 of BASIC Manual) and the boot-
strap loader (page 99 of BASIC Man-
ual) with the 2SI0. (The echo rou-
tine is given at the end of this
article).

Troubleshooting

Check the power supply levels
on the voltage regulators and check
for solder bridges. An easy way
to check the wiring is with an ohm-
meter. Use a scope, if available,
to check the baud rate. The fre-
quency is 16 times the baud rate.
110 baud should produce a square,
symmetrical waveform of roughly
.568 millisecond pulse width (1760
hertz).

110 baud .568 milliseconds

300 baud .208 milliseconds

When troubleshooting the 2SI0,
use the status register information
of the ACIA to indicate the problem.
You can single step through the 2SI0
echo routine, checking status at
appropriate times. (It is necessary
to check status since it is possible

to echo on a 2SI0 which will not
respond with BASIC.) The status
register indicates the condition of
the ACIA at any given moment, and
each bit indicates one characteris-
tic. Status register bits appear
on the data lights when instruction
333,020 of the echo program has
been single stepped. ("HIGH" in-
dicates a lit LED, and "LOW" in-
dicates an unlit LED on the data
lights.)

The status register bits are
defined as follows.
Bit 0:

HIGH - Receive data register full.
A character has been re-
ceived from the terminal.

LOW - Receive data register empty.
No character received yet
from the terminal.

Bit 1:

HIGH - Transmit data register empty.
No character is being sent
from the CPU to the ACIA.

LOW - Transmit data register full.
ACIA has a character stored
and is transmitting the
character to the terminal.

Bits 2 and 3 are for use with a
modem.

Bit 2:

HIGH - No carrier is present. (Pin
23, DCD, of ACIA will be
HIGH accordingly.) In this
stdte, pin 23 inhibits the
receiver section of the
ACIA, thus no data can enter
the 2SI0.

LOW - Carrier is present. (Pin 23,
DCD, of ACIA will be LOW ac-
cordingly.) In this state,
pin 23 activates the ACIA
receiver section, and ACIA
is free to accept data.

Bit 3:

HIGH

LOW -

Output device is not ready
to receive. In this state,
the ACIA's transmitter sec-
tion is inhibited and the
2SI0 cannot output (i.e.
transmit) data. (Pin 24 of
ACIA will be HIGH.)

Output device is ready to
receive. In this state the
ACIA transmitter section is
free to output data.

by Bruce Fowler

The other bits, which are de-
fined on page 8 of the Theory Manual,
are not vital in troubleshooting.
Thus, for proper operation, the
status register should have all
bits LOW except for Bit 1.

Single step the echo routine
through to where the status is
checked (hit single step 12 times).
If you receive proper status, hit
a key on the input device. Bit 0
will light up, indicating that the
character has been received. If
single stepping is continued, the
echo routine will output the
character.

When the ACIA is neither re-
ceiving nor transmitting, pins 2
and 6 of the ACIA must be HIGH.
With a Teletype, pin 2 of the ACIA
is LOW until the Teletype is ON
LINE. If either pin is LOW, the
ACIA responds as if data were being
transferred.

Bad Status and Areas to Look At

If Bit 3 (or 4) and pin 23
(or 24) of the ACIA are HIGH:
This indicates either bad inverters,
diodes installed backwards, or Sl-
1 and Sl-2 not tied to +5v for
RS-232 levels.

If Bit 0 is HIGH before
entering data, then Pin 2 of ACIA
is LOW when it should be HIGH, or
the ACIA hasn't been reset. The
latter could be caused by the
data buffers IC A and B not being
enabled after hitting single step
four times starting at the begin-
ning of the echo routine.

-continued on page 21

HARDWARE

COMPUTER NOTES - JULY- 117b PAGE NINETEEN

By Tom Durston

If you are having difficulties with your S8-DCDD hardware,
follow these guidelines for servicing:

A. Controller Boards:

1. On Controller Board #1 be sure the bus strips are
soldered on both the top and bottom of the P.C.
Board. Do not apply pressure to bus strips after
installation.

2. On Controller Board #1 jumper the top end of R16
(VHB) to the track from pin 7 of IC F2 (on back of
card). This ties floating inputs of sector logic
high to prevent noise pickup.

3.

6.

7.

On Controller Board #1 check the track from Pin 9
of IC HI where it goes through the board on the
plated hole. Some P.C. Cards had shorts to the
adjacent track on the back of the card.

On Controller Board #1 check jumper wires to be
sure there are no shorts to bus strips (insulation
on wires melted), and check jumper wires for cor-
rect wiring.

On both Board 1 and 2 check Stab Connector for
shorts on fingers. File at an angle along the
length of the Stab Connector and the bevel edge
of the card to remove any shorts.

Be sure all interconnect cables are wired correctly
and the pins are making good contact.

Check one shot timing on both boards as follows,
using the Disk Test Program that appeared in April
'76 Computer Notes, pages 12 and 13.

FUNCTION

a) Controller Board #1:

IC and PIN #

Read Clock Mask
Read Data Window
Sector Pulse Mask
Index Pulse Window
Read Clear
Index Pulse Verification
Sector True
Write Data Enable

IC A1 Pin 13
IC A1 Pin 5
IC El Pin 13
IC El Pin. 5
IC F1 Pin 13
IC F1 Pin 5
IC F4 Pin 13
IC F4 Pin 5

FUNCTION

b) Controller Board #2:

IC and PIN #

Repeat Step OK (Status)
Step Inhibit 1 (Status)
Head Settle
Step Inhibit 2 (Status)
Trim Erase Start Delay
Trim Erase End Delay
Disk Enable Timer
Disk Power Disable

IC A1 Pin 13
IC A1 Pin 5
IC B1 Pin 13
IC B1 Pin 5
IC B2 Pin 13
IC B2 Pin 5
IC B3 Pin 13
IC B3 Pin 5

POSITIVE PULSE WIDTH RANGE

0.7us to 1.2us
2. 6us to 2. 9us
15Cus to 600us
3.3ms to 4.5ms
130us to 150us
3. 3ms to 4.5ms
20us to 40us
250us to 300us

POSITIVE PULSE WIDTH RANGE

0.4ms to O.Sms
9.5ms to 11.5ms
35ms to 70ms
17ms to 30ms
180us to 225us
420us to 520us
1. 5us to 4. 5us
1.5us to 4.Sus

c) If the measured time constants are not within
the specified tolerance, vary the resistor value
for the one shot affected.

d) We have had difficulty using National 74123 ICs
for B3 on Board #2. Replace with Signetics or
TI ICs if you suspect problems.

If you are using 4K Dynamic cards, be sure they are
using only one wait state. See May '76 Computer
Notes, pages 9 and 10.

Check the Power Supply to be sure the negative peaks
of the +8V unregulated do not go below +7V.

-continued on page 19

By Steve Pollini

If you just bought or built a
computer and if you're new to com-
puting, maybe you're wondering why
this inscrutable device is giving
you the LED stare-down. Why doesn't
it DO something? Well, it's probably
waiting for you to break the ice.
Be assured, however, this is not an
uncommon situation. Microcomputers
are relatively new devices which
carry a stigma of "avant-garde-
ness," and even many engineers don't
quite know how to handle them. So,
in this article (and a follow-up
article next month) we'll begin to
explore just what a microcomputer
is, how it works, and what it can
do.

An important idea to keep in
mind is that a microcomputer com-
putes . It does not think and is
not autonomous. For the present,
I'll avoid the delicate philosophi-
cal argument concerning the defini-
tion of the phrase "to think".

What I'm getting at here is
that your favorite "wonder-box" of
a computer needs to be told what
to do. The beauty of a computer
system lies in its ability to per-
form our commands or "programs"
very rapidly and very precisely.
What we call a "program" is a set
of instructions that tells the
computer (or more specifically,
the microprocessor) what functions
we want it to perform. The program
that is used by the processor re-
sides in memory and is referred to
as software. It is called "soft-
ware" because it is easily modified
as opposed to the actual electronic
circuitry (hardware) which is not
so easily changed.
THE SYSTEM

Down to business. A micro-
computer is called such because it
employs the use of a microprocessor,
or so-called "computer-qn-a-chip".
This computer-on-a-chip is an inte-
grated circuit that consists of
literally thousands of transistors
and other circuit devices. These
make up logic circuits to perform
the required functions of the pro-
cessor. In this article the Altair
680b system will be used for exam-
ples, but the concepts presented
are generally applicable to most
microprocessor systems.

The microcomputer, then employs
the use of a microprocessor which is
the "heart and brains" of the sys-
tem. This is because it performs
all of the arithmetic computations
and also controls the rest of the
computer system. The rest of the
computer system consists of memory

-continued on page 22

PAGE TUENTY-FOUR COMPUTER NOTES - JULY, M7L

Altair 8800b
-continued from page 1

NEW FRONT PANEL CAPABILITIES
NEW DISPLAY/CONTROL LOGIC

Added Front Panel Switch Functions

Five new front panel switch
functions have been added to the
Altair 8800b computer to expand the
front panel capability:

1. SLOW: Permits execution of a
program at a rate of approximately
2 machine cycles per second or
slower. The normal machine speed
is approximately 500,000 machine
cycles per second. Useful in de-
bugging programs where it would
be too time consuming to single
step through the code.

2. DISPLAY ACCUMULATOR: Displays
the contents of the CPU accumula-
tor register on the front panel
data LEDs.

3. LOAD ACCUMULATOR: Loads the CPU
accumulator register with the
data present on the lower eight
front panel address switches.

4. INPUT ACCUMULATOR: Inputs the
data present at an input/output
device into the CPU accumulator
register. The input/output de-
vice is selected on the upper
eight front panel address switches.

5. OUTPUT ACCUMULATOR: Outputs the
contents of the CPU accumulator
register to a selected input/
output device. The input/output
device is selected on the upper
eight front panel address switches.

Dress Panel

A new multi-color dress panel
with functionally designed graphics
is used in the Altair 8800b. The
front surface of the dress panel has
a protective sheet of mylar to in-
sure that the graphics are not rub-
bed or scratched off. The LED
indicators are now back-lit through
the panel and the toggle switches
have 50% longer handles that are
flatted (instead of round) for
easier use.

Front Panel I/O Capability

The 8800b has I/O channel 255,
and effectively channel 254, dedica-
ted to the front panel. As with the
Altair 8800, an input from channel
255 (octal 377) will input the con-
tents of the Sense Switches (A15—
A8) to the accumulator. The 8800b
has the added feature that an output
to 255 will display the contents of
the accumulator on the data LEDs.
In addition, one can configure this
1/0 channel (by means of patching
jumpers) so that all outputs (to any
I/O channel number) are shown on the
data LEDs and/or all inputs (from
any I/O channel number) are shown on
the data LEDs.

Electronically the Display/
Control Board has been completely
redesigned. The logic design is now
totally synchronous. The design ap-
proach used in the Altair 8800b is
to allow the Display/Control logic
to assume control of the CPU and jam
the instructions necessary to imple-
ment the Front Panel functions. For
example: To implement an EXAMINE,
the Display/Control Board causes the
CPU to execute a jump (JMP) to the
address selected on the front panel
address switches (A0--A15).

In order for the Display/Control
Board logic to jam instructions to
the processor (that is, cause the
processor to execute a specific
series of instructions), two things
are necessary:

1. The Display/Control logic must
have control of the processor
READY line (RDY). (See section
entitled "New Bus Lines.")

2. The Display/Control logic must
have access to the processor
data bus.

If these two conditions are
satisfied, the Display/Control logic
can cause the processor to execute a
series of instructions by successive-
ly placing the instructions on the
data bus and activating the READY
line to cause the processor to exe-
cute the required instructions.

The block diagram, Figure 1,
summarizes the interface between the
Display/Control logic, the CPU, and
the Memory and I/O. On the block
diagram, note that:

1. The Display/Control logic has
control of the READY (RDY) line.

2. The Display/Control logic has
access to the data bus through
its own data input drivers
(FDI0--FDI7). By activating the
Bus Control signal, it can enable
its own drivers and disable the
standard data input drivers
(DI0--DI7) from the memory and
I/O.

The block diagram, Figure 2,
shows the Display/Control logic it-
self (from a functional block view-
point) .

1. The front panel switches are de-
bounced and the examine, deposit,
accumulator and I/O function
switches (8 switches) are encoded
to the upper four address lines
(RA7--RA4) of the control PROM.

2. The outputs from the RUN, STOP,
SINGLE STEP and SLOW switches go
(in pairs) to similar circuits
whose outputs (RUN and SS) con-
trol the RDY line ([RDY] = [RUN]
OR [SS]). (See Figure 3.) Both
of these circuits consist
basically of flip-flops which,
when set, force the outputs (RUN,
SS) high and, when reset, force
the outputs low.
The RUN/STOP flip-flop is set
asynchronously as soon as the in-
put from the run switch (S[RUN])
goes high. This in turn causes
RDY to go high and the processor
will start to execute. The flip-
flop will reset when the input
from the stop switch (S[ST0P])
goes high and the following stop
condition is true:
STOP COND =

(PSYNC) AND (D05 = SMI) AND (STSTB).

-continued

FIGURE 1. Display-Control Logic/CPU
Interface

COMPUTER NOTES - JLLYi PAGE FIFTEEN
Altair 8800b -continued

SWITCHES
AND

DECODING

RA7

RA6

RA5

RA4

RA3

RA2

RESET

4-BIT
PROM

ADDRESS
COUNTER

RA1

RAH

PROM

DATA OUT

(RD0-RD7)

FD10-FDI7

HALT
CLOCK

CLOCK

CONTROL
LATCH

-TO
INTERFACE

S5

S4

ADDRESS

LATCH

A8-A15

S3 ADDRESS
LATCH

A0-A7

S2

SI

A8-A15

A0-A7

S6 (DEP) \
S7 (BUS CONTROL) (BC)

— TO

INTERFACE

S8 (SB)
/

/ PSYNC

FROM
SS/SB

CONTROL
ROY

CPU
STSTB

SS/SB
CONTROL

\
FIGURE 2. DISPLAY/CONTROL LOGIC

BLOCK DIAGRAM

RDY

TO

"CPU

FIGURE 3. DISPLAY/CONTROL LOGIC
READY LINE CONTROL CIRCUITRY

This insures that the processor
will stop during the Ml machine
cycle of an instruction cycle.

3. The SS/SB circuit's flip-flop is
set by the switch inputs from
SINGLE STEP or SLOW, or by the
SB input from the control PROM.
This circuit, however, has two
sets of stop conditions.

One is associated with the SINGLE
STEP/SLOW switch and one with the
control PROM that generates the
Front Panel functions. The latter
will always stop execution after
a single machine cycle has been
executed. The former can be con-
figured via patching jumpers to
stop execution after either a
single machine cycle or a complete
instruction cycle.

8080A

D0 - D7
8216

DBIN

ROY

STSTB

01

02

The 8 switches which are encoded
as addresses to the control PROM
represent those functions that
are implemented by jamming in-
structions to the CPU:

EXAMINE
EXAMINE NEXT
DEPOSIT
DEPOSIT NEXT
LOAD ACCUMULATOR
DISPLAY ACCUMULATOR
INPUT
OUTPUT

Pressing one of these switches
causes a unique address to be set
up on the upper four address lines
of the PROM (thus selecting a 16-
byte sector within the PROM). At
the same time, the 4-bit PROM ad-
dress counter is cleared and
clock pulses are applied to its
input. This causes the lower
four PROM address lines to begin
counting from zero and continue
sequentially through the 16 bytes
of the selected sector. This
will continue until a stop code is
encountered in the PROM which
will stop the address counter.
The instructions stored as data
in the PROM may be roughly divided
into two categories:

D/C Logic Control instructions
at the even address locations;

"Processor" instructions at
the odd address locations.

The D/C Logic Control instructions
are output from the PROM and stored
in the CONTROL LATCH. These in-
structions configure the D/C
logic so the subsequent "pro-
cessor" instruction can be jammed

-continued on page 19

- < FROM FRONT PANEL

A0 - A15

DO0 - D07 8800b
BUS

DI0 - DI7

DIG 1

PDBIN

/
-^[FROM INTERFACE

\

8212
STATUS 8800b

- BUS

8224 RDYIN

FRDY

- < PRDY

XRDY

< X R 0 Y 2 /

FIGURE 4. CPU BLOCK DIAGRAM

PAGE EIGHTEEN COMPUTER NOTES - JULYi 117L

Version 3.4 Attair BANG
by Paul Alien

Version 3.4 will oe released only in the disk version because version 4.0 will be released within a month for all four versions of BASIC. Version 4.0 will allow cassettes of programs to be interchangeable between the different versions of BASIC (8K, Extended, Disk), so it was decided to release 3.4 only in the disk version until 4.0 was ready. Users who have ordered 3.4 will receive 4.0 (except for those who have ordered Disk 3.4) . 4.0 in the Extended and Disk versions will have constant compression and line pointers which should speed up program execution in these versions signifigantly.
3.4 and 4.0 will have all the features of 3.3 which

was described in detail in the Disk documentation. This
means that the Extended and Disk versions will have long
lines (255 characters), the INSTR function, CONSOLE, the
WIDTH command for setting terminal width, single quote
(') remarks, and multiple assembly language subroutines
(DEFUSR). The 8K version , Extended version, and Disk
version all have octal constants and CLOADing and
CSAVEing of matrices on cassette.

10.) (Disk version 3.3) sequential data files caused position (POS) to be set to zero.
Input or Output to the current terminal Fixed.

11.) (All versions prior to 3.4 not fixed in 4K 3.4) If a direct GOSUB was given to a subroutine which did INPUT from the terminal, the INPUT would wipe out the direct statement, causing unpredictable results when a later RETURN was executed. Under these circumstances, 3.4 will immediately print OK and return to system level if a RETURN is executed back to a direct statement which has been destroyed by an INPUT.

NOTE
The Extended version of
4.0 BASIC will require 16K
bytes minimum for
execution (Extended BASIC
4.0 itself requires 12K).

The features and changes listed below are in order
of the version for which they are applicable, i.e.
features for 4K version first, 8K next, etc.

Additions to 4K and larger versions

Changes for 8K and Larger versions

Control-C Interrupts INPUT statements

BASIC version 3.4 has a number of added features as well as a number of bug fixes.
The bug fixes are:

1.) BASIC (all versions) now works properly with the 4PI0 board as described in previous Extended BASIC documentation. The correct status bits are now used, and BASIC does an IN from octal channel 23 to clear the output status bit after each character is output. This IN is done no matter what I/O board is used, so it is not recommended that a board other than a 4PI0 be used at I/O port 23.

2.) (Extended, Disk versions) The FRE function now
returns a positive number if the amount of free memory
exceeds 32K bytes.

3.) (Disk version) When a random file is deleted, all the space used by the random file is freed up. Previously, if a random file was extended incrementally, only the first group (8 records) would be freed when tne file was deleted.

Control-C is now the only way to interrupt an INPUT statement, if a carriage return is typed in response to an INPUT statement, execution of the program will continue at the next statment after the INPUT without changing the values of the variables specified in the INPUT statement.

Rubout and Control-u

The rubout (octal 177). can now be used instead of
backarrow () or underline to delete characters on an
input line. "The difference is that rubout prints each
character that is deleted and precedes the first
character deleted with a backslash (\). If deletion was
in progress using rubouts and a new character is typed,
a backslash will be echoed and then the new character
will be typed.
Example:
100 X=\=X\Y=10
(In this case two rubouts were typed after 'X=' had been typed.)

4.) (Disk version) When simultaneously accessing two files OPENed on different disks, BASIC sometimes
forqot which disk it was currently accessinq.
been fixed.

This has

5.) (3.2 8K and larger versions) Typing in a line
with a large number of ? marks could case BASIC to be
wiped out. Fixed.

6.) (Disk version) The INSTR function did not free
up its string temporaries properly, causing spurious
"STRING FORMULA TOO COMPLEX" error messages. Fixed.

7.) (Extended 3.2 only) When subtracting double precision numbers of the same exponent of opposite sign, the sign was incorrect, i.e. PRINT 2-3 gave 1 as an answer. Fixed.

8.) (Disk Version 3.3) Use of the
caused unpredictable problems. Fixed.

line printer

Control-U may now be used to delete a line in the
same fashion as the at-sign (§). A carriage return is
printed and the current line of input is deleted.

Spaces No Longer Allowed in Reserved Words

Spaces may no longer appear inside reserved words
such as THEN or AND. The only exception is GOTO which
may have embedded spaces. The reason for this is to
avoid statements like:
100 R=F OR Q
Being LISTed as:
100 R=FOR Q
With the corresponding SYNTAX (SN) error when the line
is executed.

Pause (Control-S) and Proceed (Control-Q)

9.) (Disk version 3.3) Use of the RND function with
a negative argument caused the random number generator
to return the same value over and over again. Fixed.

- CONTINUED -

COMPUTER NOTES - JULY,,117b PAGE SEVENTEEN

VERSION 3-L{ ALTAIK BASIC - CONTINUED

When executing a urogram, Control-S may be used to
cause program execution to pause so that output may be
examined and then resumed with Controi-O. This is
especially useful when using high speed CRT terminals.
After executing a BASIC statement, Control-S will cause
BASIC to pause until Control-Q or Control-C is typed.
Control-C will cause a BREAK and return to command
level. Control-S and Control-Q are not echoed and have
no effect when a program is not being executed.

Hexadecimal Constants

Hexadecimal (base sixteen) constants are now available by preceding the number with &H. If the hexadecimal value contains a character which is not A-F or 0-9 a SYNTAX (SN) error will occur. If the hexadecimal value is greater than 16 bits of signifigance (more than four hex digits), an OVERFLOW (OV) error will occur.
Examples:
PRINT &HFF
255
100 LADDR=ADDR AND &HFF 'mask off low byte

Octal contants may optionally be expressed either
with a preceding & or with a preceding &0.

Features Available Only in
Extended and Larger Versions

Control-C interrupts LINE INPUT

Control-C is now the only way to interrupt a LINE INPUT and return to command level. In version 3.3, a BEL (Control-G) was used to perform this function.

Thus, a line input as:
100 print a,b:rem print out the values of a and b
Will be LISTed as:
100 PRINT A,B:REM print out the values of a and b
or:
150 if a$="basic" then 200 'test for BASIC command
is LISTea as:
150 IF A$="basic" THEN 200 'test for BASIC command

Brackets now Allowed as Matrix Subscript delimiters

Brackets [,] are now interchangeable with parentheses as delimiters for matrix subscripts. Thus:
100 A[I]=0
is equivalent to:
100 A(I)=0

This has been done for
BASICS, notably HP BASIC.

compatibility with other

CONTinue possible after Errors
It is now possible to CONTinue after an error in a

direct statement. Also, errors no longer cause loss of
the current FOR. ..NEXT context and subroutine
(GOSUB...RETURN) context.

EDIT Command Types BEL on Errors

Control-C and Control-0 Printing Changed

Control-C and Control-0 now print as 'C and "0 when they are typed. Control-U in the Extended version also prints as *U.

The EDIT command will now type a BEL character
(control-G) if it receives a command which it does not
recognize (i.e. Y).

Error Trapping

The Tab (Control-1) Character
Tao (Control-1) is used on either input or output

to move the terminal carriage or cursor to the next
eight column field on the terminal. The tab stops are
columns 1,9,17,25,33, etc.

This is especially useful for formatting lines
continued with dine feed>:
100<Tab> FOR 1=1 TO 10:<line feed> <tab><tab> FORJ=1TO10:
<tab><tab><tab> A(I,J)=0: <tab> NEXT J,I<carriage return>
LISTs as:
100 FOR 1=1 TO 10:

FOR J=1 TO 10:
A(I,J)=0:

NEXT J,I

NOTE
<tab> characters always
print as the appropriate
number of spaces.

Often it is desirable to trap execution of errors
within a BASIC program in order to take action to
recover from the error, or to give a better explanation
of why the error occurred than a simple error message.

This facility has been added to BASIC through the use of the ON ERROR GOTO, RESUME and ERROR statments, and with the ERR and ERL variables.

Enabling Error Trapping

The ON ERROR GOTO statement is used to specify which line of the BASIC program the error handling subroutine starts. The ON ERROR GOTO statement shoula be executed before the user expects any errors to occur. Once an ON ERROR GOTO statement has been executed, all errors detected during the execution of the BASIC program will cause BASIC to start execution of the specified error handling routine. If the<line number> specified in the ON ERROR GOTO statement does not exist, an UNDEFINED STATEMENT error will occur.
Syntax of the ON ERROR GOTO statement:
ON ERROR GOTO Cline number>
Example: 10 ON ERROR GOTO 1000

Lower Case Input
Lower case alphabetic characters are now accepted by BASIC. Lower case characters are always echoed as lower case, but when lower case is used as part of a direct command or program statement, translation of lower case to upper case is performed if the lower case character is not part of a quoted string literal, REMark statement, or single quote (') remark.

Disabling the Error Routine

IF the user desires to disable the trapping of errors he should place an ON ERROR GOTO 0 statement in his program. This disables trapping of errors, and any error will cause BASIC to print an ERROR message ana stop program execution.

- CONTINUED -

PAGE EIGHTEEN COMPUTER NOTES - JULYi 117L

VERSION 3-4 ALTAIR BASIC - CONTINUED -

If an ON ERROR GOTO 0 statement appears in error trapping subroutine, it will cause BASIC to stop and print the error message wnich caused the trap. It is recommended that all error trapping subroutines execute an ON ERROR GOTO 0 subroutine it an error is encountered for which they have no recovery action.

Error Routine Example

NOTE
If an error occurs during the execution of an error trap routine, the error will immediately be "forced". An error message will be printed for the error detected mside the error trap routine.

how a simple error The following example shows trapping subroutine operates.
100 ON ERROR GOTO 500 200 INPUT "WHAT ARE THE NUMBERS TO DIVIDE" ;X,Y 210 Z=X/Y 220 PRINT "QUOTIENT IS";Z 230 GOTO 200
500 IF ERR=4 AND ERL=210 THEN b20 510 ON ERROR GOTO S 520 PRINT "YOU CANT HAVE A DIVISOR OF ZERO!" 530 RESUME 200

The ERROR statement

The ERR and ERL Variables

When the error handling subroutine is entered, variable ERR contains the error code for the error. error codes and their meanings are listed below.
the The

In order to force an error to occur in a program, an ERROR statement has been provided. The primary use of the error statement is to allow the user to define his own error codes which can then conveniently be handled by a centralized error trap routine as described above. The format of the ERROR statement is:
ERROR Cnumeric formula>
Example:
ERROR 5 SYNTAX ERROR

THIS SECTION TO BE ADDED LATER

The ERL variable contains the line number of the line where the error was detected. For instance, if the error occurred on line 1000, ERL will be equal to 1000.
If the statement which caused the error was a direct (immediate mode) statement, the line number will be equal to 65535 decimal.

NOTE
Neither ERL nor ERR may appear to the left of the = sign in a LET or assignment statement.

The RESUME statement
The RESUME statement is used to continue execution of the BASIC program after the error recovery procedure has been performed. The user has three options. The user may RESUME execution at the statement that caused the error, at the statement after the one that caused the error, or the user may RESUME execution on a different line than caused the error.

which caused To RESUME execution at the statement the error, the user should use:
RESUME
or
RESUME 0

To RESUME execution at the statement immediately after the one which caused the error, the user should use:
RESUME NEXT

To RESUME execution at a line dfferent than the one where the error occurred, use:
RESUME <line number>

Where <line number> is not equal to zero.

When defining his own error codes, the user should pick values which are greater than the ones used by BASIC. Since further error messages may be added to BASIC in the future, it is recommended that error codes which are allocated from the last possible value (255) down to lower codes be used. If*the Cnumeric formula> used in an ERROR statement is less than zero or greater than 255 decimal, a FUNCTION CALL error will occur.
If an attempt is made to print out an error message for an error which is greater than the highest defined system error, an FC error will be printed instead.
Of course, the ERROR statement may also be used to force SYNTAX or other standard BASIC errors.

Assigning String Substrings - The MID$ statement

A new statement has been added that makes it much easier to change a single character or sequence of characters inside a string without altering the other characters in the string. As an added benefit, using such a statement does not incur the numerous str ing allocations if concatenation is used to perform this function.
The format of the MID$ statement is:

MID$(<string variable)-,Cnumeric formula 1> Cnumeric formula 2>])=Cstring formula>
Examples:
100 MID$p 500 MID$n

;,3,2)=- --!(I) ,2)=" TEST"

Cnumeric formula 1> specifies the first character of the Cstring var iable> that will be replaced by the C str ing formula> to the right of the ' = * sign. If Cnumeric formula 1> is greater than the length of the -Cstring variable>, then a FUNCTION CALL error will occur.
The optional Cnumeric formula 2> specifies how many characters to copy into the Cstring variable> from the Cstring formula>.
Characters are copied from the Cstring formula> into the Cstring variable>, starting at the character position specified by Cnumeric formula 1>. They will be copied until either the end of the Cstr ing vanable> is reached, the end of the Cstring formula> is reached, or Cnumeric formula ,2> characters have been copied, whichever occurs first.

- CONTINUED -

COMPUTER NOTES - JULY- 117b PAGE NINETEEN

VERSION 3-4 ALTAIR BASIC - CONTINUED -

More Examples:

Suppose T$="TEST" Ttien:
MID$(T$,2)="ORT" T$ now equals "TORT"
or
MID$(T$,3,1)=" " T$ now equals "TE T"
or
MID$(T$,3,2)="XTEND" T$ now equals "TEXT"

Zero Bytes Allowed in Sequential
Disk Files

Zero bytes are now allowed as valid data bytes in
sequential data files on the disk. In version 3.3, zero
bytes could not be written to sequential files.

Features Added to the DlaK Version Only

FILES Command prints Files Across Line

The FILES command now prints the files on the
floppy disk in columns across the page instead of down
the page. This is much more convenient for CRT
terminals. *
*

to the CPU. In general this will
involve setting the SB and BUS
CONTROL bits and selecting the
source of the "processor" instruc-
tion. It must be noted here that
by "processor" instruction we
mean any of the bytes that may be
required to make a complete 8080
instruction (not just the OP
code). There are five sources for
"processor" instructions:

CONTROL PROM (via tri-state
drivers), enable: S5

Upper address switches
(A15--A8) , enable: S2

Lower address switches
(A7--A0), enable: SI

Upper address latch,
enable: S3

Lower address latch,
enable: S4

A typical PROM sequence to com-
plete an examine would be as
follows:

-Altair 8800b-
continued from

page 15

Disk Hardware Notes
-continued from page 13

6. Our dealers now have Pertec FD-400 service manuals.
If you suspect difficulty with the FD-400, contact
your nearest dealer for his advice and service.

7. If you can't remedy the difficulty, don't try to
save postage by just returning the FD-400 alone.
Please return your complete 88-DCDD including
Cables, Controller Boards, and Drive Chassis.
This will allow us to check your system out com-
pletely and save you time, money, and hassle.

B. Disk Drive Chassis:

1. On the Buffer Card the most common difficulty is
incorrect wiring or incorrectly installed ICs.

2. On the Power Supply Board be sure XI and X3 are
properly installed as indicated on the errata sheet.

3. If you suspect difficulty with the Disk Drive, DO
NOT attempt to service it. Any work done on the
Pertec FD-400 will void the warranty. Typical ser-
vice charges for customer damaged FD-400's are
$100.00.

4. Do not plug the FD-400 connector in backwards. Be
sure to install the polarizing key as the instruc-
tions indicate. Plugging in the connector back-
wards will destroy 5-10 ICs and will cost at least
$100.00 for repair.

5. If you must ship the Pertec FD-400 or complete Disk
Drive unit, reinstall the Disk door block or strap.
Any damage to the mechanism as a result of incorrect
shipping typically costs the customer $100.00 in
repair charges.

6) "Processor Instruction": A8—A15

7)

8)

Control Instruction:
Control Latch

Clear

"Processor Instruction": Stop
Code for PROM address counter

FRONT PANEL INTERFACE BOARD

All the lines between the 8800b
bus and the Display/Control Board
are now buffered through a Front
Panel Interface Board. (The bus
lines no longer directly drive any-
thing on the Display/Control Board.)
The Front Panel Interface Board con-
nects to the Display/Control Board
by means of two 34-conductor ribbon
cable assemblies, eliminating the
wiring harness between the Display/
Control Board and the bus.

I)

2)

3)

Control Instruction:
BUS CONTROL (BC), S5

Set up SB,
NEW CPU BOARD

"Processor Instruction":
303 (octal)

JMP =

Control Instruction:
BC, SI

Set up SB,

4) "Processor Instruction": 000g.
The contents of PROM are immater-
ial here since data is coming
from address switches A0—A7.

5) Control Instruction: Set up SB,
BC, S2

The CPU Board consists of four
major functional blocks:

8080A CPU Chip
8224 Clock Generator Chip
8212 Status Latch
Drivers and Receivers

The diagram, Figure 4, shows
the relationship between these four
blocks. Several points of interest
are:

1. The DIG1 signal (see section en-
titled "New Bus Lines") controls
enabling of the input data
drivers (DI0--DI7) from the bus.

The ready input to the 8224
(RDYIN) is the logical product
of (PRDY) AND (FRDY) AND (XRDY)
AND (XRDY2).

The bidirectional data bus to
(and from) the 8080A is completely
buffered (8216s).

The 8080A, the microprocessor
chip itself, exercises control over
the CPU board and the rest of the
system. It executes the instructions
stored in memory and controls all
the data transfers.

The 8224 clock generator chip
provides the two-phase clock (at the
specified voltage levels) required
by the 8080A. In addition, it
synchronizes the READY and RESET in-
puts to the 8080A and provides a
status signal (STSTB) that can be
used to load the 8212 status latch.
This guarantees that status data
will be available as soon as possible
in a machine cycle. The master tim-
ing reference for the 8224 is an
external crystal (18MHz). By chang-
ing. this crystal it is possible to
generate the clocks used by the
faster versions of the 8080A: the
8080A-1 (1.3us cycle time) and the
8080A-2 (1.5us cycle time).

-continued on page 21

PAGE TUENTY-FOUR COMPUTER NOTES - JULY, M7L

One S)ot!

A!tair " 16K

A/mosf too good to be true, the A!tair 16K Static

RAM board is easi!y the most advanced memory

modu!e yet developed for the Aitair 8800, 8800a arid

8800b computers.

Four A!tair 16K Static boards add up to the entire

64K of memory direct!y access:b!e by the A!tair.

The Aitair 16K Static board offers two surprise

features—minima! power requirements and fast access

time. One A!tair 16K Static board draws !ess current

than any 8800 compatible 4K boards, thus four Aitair

16K Static boards can be ptugged into the Aitair

8800 without beefing up the power supply.

The maximum access time of the Aitair 16K Static

board is 215 nanoseconds, which makes this board

the fastest Aitair compat!Me static board existence.

The Aitair 16K Static is now m full production.

Special introductory price is $765 in kit form and

$945 assembled.

MAtL TH!S COUPON TODAY

Enclosed is check for $.

BankAmericard #

or Master Charge #

Q Aitair 16K Static EJ Kit ED Assembled

(inc!ude $3 for postage and handl ing)

O Piease send free information package and price sheet.

NAME

ADDRESS.

CITY. STATE AND ZIP

^ MITS/2450 A lamo SE/Albuquerque, NM 87106/505-243-7821

Prices, delivery and speci f icat ions subject to change . Al low up to 60 days for

delivery.

2450 Atamo SE/A!buquerque, NM 87106/505-243 7821

COMPUTER NOTES - JULY- 117b PAGE NINETEEN

2SIO Echo Routine

OCTAL ADDRESS OCTAL CODE OCTAL ADDRESS OCTAL CODE

000 076 013 322
001 003 014 010
002 323 015 000
003 *020 016 333
004 076 017 **021
005 021 (=2 stop bits. 020 323
006 323 025=1 stop bit) 021 **021
007 *020 022 303
010 333 023 010
011 *020 024 000
012 017

Control channel
* * . Data channel

Troubleshooting

-continued from page 12

If all bits are HIGH: ACIA is
not selected due to one or more bad
control signals or the output buffer
to the CPU is not enabled. After
single stepping 12 times (from the
beginning of the echo routine) in
the echo routine, the ACIA should
contain:

(HIGH and LOW are in TTL levels,
.8v or less for LOW, 2v or more
for HIGH)

CSO Pin 8 HIGH
RS Pin 11 LOW

CS1 Pin 10 HIGH

R/W Pin 13 HIGH

E Pin 14 HIGH

CS2 Pin 9 LOW

IC P Pin 8 LOW

IC 0 Pin 8 LOW

IC S Pin 11 HIGH

NOTE: R/W (pin 13 of the 6850) is
LOW for outputting. Continue
single stepping 10 more times and
Pin 13 should be LOW. IC P, Pin
8, will be HIGH, while Pin 6 will
be LOW. SINP will also be LOW.
All other pins will be the same
as before

Final Notes

If the ACIA is not reset, the
Teletype may run open when it is
turned on. To correct this, simply
flip the Altair ON/OFF switch a
couple of times. In some cases an
etching error will short out SOUT.
This etching error is located on
the back of the 2SI0 board between
IC S, Pin 11, and the gold fingers.
Usually SOUT is shorted to address
line A6. This etching short should
be cut. For those of you who
bought the BASIC manual before the
extended BASIC section was written,
the 2SI0 echo routine and bootstrap
are listed below: Note that the
first 4 bytes reset the ACIA and
clear its internal registers. The
next 4 bytes tell the ACIA what
type of parity, the number of bits/
character, and the interrupt infor-
mation that will be used.

NOTE: There is a misprint in the
Appendix, page 101, of the Extended
BASIC Manual. The corrections are
listed below:

025 in Location 005 is for 1 stop

Altair 8800b
-continued from page 19

The 8212 status latch outputs
the status signals that define the
current machine cycle for all de-
vices attached to the bus. The
status latch was used in the 8800b
instead of the 8228 bus controller
because it was necessary to maintain
bus compatibility with the original
Altair 8800.

The majority of the system bus
lines either originate or terminate
at the CPU board. All output lines
from the board are driven by tri-
state bus drivers (74367 or 74368).

ADDED BUS LINES

All of the original Altair 8800
bus lines have been maintained, and
five new lines have been added:

Number Signal

12 XRDY2
58 FRDY
55 RTC
56 STSTB
57 DIG1

XRDY2 and FRDY

XRDY2 and FRDY are additional
ready inputs to the CPU Board. For-
merly, the READY signal consisted of
two inputs, PRDY and RDY. The READY
signal input to the processor that
determines the RUN/WAIT state of the
8080A is now defined as the logical
product of these four signals:

READY = (PRDY) AND (FRDY) AND (XRDY)
AND (XRDY2)

Therefore, if any of the four
"ready" signals on the bus are pulled
low, the READY input to the 8080A
will go low, causing the CPU to enter
a series of .5 microsecond wait
states. The four "ready" signals on
the bus are used as follows:

PRDY: Used by memory and I/O to
synchronize the CPU to slower
memory or I/O

XRDY and XRDY2:
External ready signals.
XRDY and XRDY2 are available
to devices that have to stop
the processor (by pulling
READY low), but must also be
able to sense the state of
PRDY and FRDY. (For example:
DMA)

RTC

RTC is a 60Hz signal used as a
timing reference by the Real Time
Clock/Vectored Interrupt Board.

STSTB

STSTB is a strobe signal pro-
vided by the 8224 clock generator
chip. Its basic function is to
strobe the 8212 status latch to
allow status signals to be set up as
soon as possible. This signal is
also used by the 8800b Display/Con-
trol logic.

DIG1

DIG1 is a signal that controls
enabling of the CPU Data Input (DI)
drivers. The 8800b employs two sets
of DI drivers: one is the standard
set used by all memory and I/O de-
vices; the other is used exclusively
by the Display/Control logic. If G1
is defined to be the enable signal
for the first set of drivers and G2
to be the enable for the second set,
then:

G1 = (DIG1) AND (PDBIN)

G2 = (DIG1) AND (PDBIN)

POWER SUPPLY

Specifications: The power sup-
ply furnishes the following voltages
to the 8800b bus at the indicated
full load currents.

8 volts at 18 amps

+18 volts at 2 amps

-18 volts at 2 amps

The +18 and -18 volt supplies
are pre-regulated (series pass tran-
sistor) to provide a constant vol-
tage to the bus over the load range
of the supplies (0 - 2 amps).

The +8 volt supply is not pre-
regulated. Instead, the 8 volt
secondary of the transformer is
tapped at 3 points. By changing the
tap that drives the 8 volt supply,
the bus voltage can be maintained
between 7.5 volts and 9 volts over a
load range of 1 amp to 18 amps.

The primary of the power trans-
former is tapped to allow for either
115 volt AC or 230 volt AC operation.
In addition there are "HIGH LINE" and
"LOW LINE" taps for 130 VAC, 100 VAC,
260 VAC and 200 VAC operation. The
supply will operate at the above
specifications on either 50Hz or
60Hz line frequencies.

bit.

021, used in Location 005, is for
2 stop bits.

I FRDY: Used by the Display/Control
^ logic

-continued on page 23

PAGE TUENTY-FOUR COMPUTER NOTES - JULY, M7L

My Computer Just Stares
-continued from page 13

and I/O (input/output). The memory
does just what its name infers: it
remembers. It has unique locations
(addresses) and can store informa-
tion (data) within these locations.
The j[/0 section of the computer is
what allows the computer to commun-
icate with the rest of the world,
e.g. Teletypes, CRTs, other compu-
ters .

There has to be a way for these
different sections of the computer
to communicate with each other.
This is done via a data bus and an
address bus (see Figure 1). In
many microcomputers such as the
Altair 8800 and the Altair 680b,
the data bus consists of 8 data
lines, because information is trans-
ferred and stored in 8-bit words
called bytes. Each byte of data
stored in memory is assigned a
unique 16-bit (2-byte) address. The
16-bit address is used by the MPU
to gain access to the contents of
a particular memory location.
Addresses are sent out to memory
from the microprocessor on the ad-
dress bus.

Each I/O device in the system
also has one or more 16-bit addresses
assigned to it. These I/O devices
are addressed the same as any memory
byte location.

A LOOK INSIDE THE MICROPROCESSOR

Within the microprocessor is
an Arithmetic Logic Unit (ALU).
This portion of the chip logic
performs all of the basic arith-
metic types of operations (add, sub-
tract, compare, etc.) on two oper-
ands. Because it must perform
these operations in a particular
sequence, the ALU is controlled by
one of the MPU registers called the
Program Counter (PC) (see Figure 2).
Once a program (sequence of instruc-
tions) is loaded into memory, the
Program Counter is ldaded with the
address of the first instruction
of the program. When the computer
is put into the RUN mode, the MPU
puts the address contained in the
PC onto the address bus and reads
the contents of that location via
the data bus. The instruction that
has been read is executed after the
PC is incremented to point to the
next instruction. This sequence is
repeated until the processor is
halted.

There are two accumulators,
within the MPU, labelled ACCA and
ACCB. The purpose of the accumula-
tors is to temporarily store data,
either before or after it has been
operated upon by the arithmetic
logic unit (ALU). For example, to
add two numbers, first you must
load one of the numbers from memory
into ACCA. Second, the other number
nust be loaded into ACCB. Then an
3.dd instruction (which, like the
instructions to load the accumula-
tors, will be in the program stored

in memory) will be executed to add
the contents of the accumulators.
After they are added together, the
result is then stored in ACCA. This
storage in ACCA is temporary. In
order to see what the result is, it
is necessary to have an instruction
in the program which tells the MPU
to store the contents of ACCA at a
particular memory address location.
Located at this memory address lo-
cation could be either memory or
an I/O device. (Some of you super-
software-types might be grumbling
now since .there is an instruction
which allows data at a memory ad-
dress to be directly added to ACCA.
You say to first load ACCB is in-
efficient because it takes extra
steps. I agree, but for the sake
of example, chose to implement the
use of ACCB.)

Perhaps you're wondering at
this point just how the MPU knows
what instruction to execute. Well,
inside of the MPU is an Instruc-
tion Decoder. The Instruction De-
coder decodes the instructions that
are read from the program and has
the MPU perform them. Thus, when
it reads an ABA (add ACCA to ACCB),
in a binary form, it sets up the
logic circuitry to take the contents
of ACCA and ACCB, adds them together
in the ALU, and then stores the
result in ACCA.

The Condition Code Register
(CCR) is used by the MPU to control
program flow during system opera-
tion. It consists of 6 bits that
can be set to either a one or a
zero. A one in a particular CCR
bit is considered a set condition,
while a zero in a particular bit
is considered to be a cleared
condition. For example, one of
the CCR bits is the Carry bit and
it gets set whenever there is a
carry from the most significant bit
(bit 7) of a result. This could
happen, for example, when adding
two numbers in the accumulators.

Carry
Bit

0 1 0 1 1 1 0 1 0 ACCA before addition

0 1 1 0 0 0 1 0 1 ACCB before addition

1 0 1 1 1 1 1 1 1 ACCA after addition
Once the carry bit is ^et^ it can
be tested or checked to designate
program flow, i.e., determine what
part of the program should be exe-
cuted next.

The Index Register (IX) is a
two-byte register that is used to
temporarily store data or a sixteen
bit memory address. In a real
world application it can be used
for indexing into a table. For
example, if you wanted to clear a
section of memory (set all of the
bytes equal to zero), a starting
address would be loaded into the
IX. The address location in memory
designated by the IX would then be
cleared. The IX then could be in-
cremented by one and the next byte

would be cleared. This would con-
tinue until the last address of
the block had been cleared. You
may now ask, "How does the MPU
know when the last address has been
cleared?" This would be taken care
of by comparing the IX with a mem-
ory byte containing a specified
number. The operation would end,
for example, when the address in
the IX equalled the specified num-
ber in memory.

Finally, within the MPU is the
Stack Pointer. Very simply, the
Stack Pointer is used to point to
the Stack. The Stack is a section
of memory that is used for tempor-
ary storage of MPU register contents.
Say, for instance, that you just
finished a calculation and the ans-
wer is in ACCA. Instead of storing
ACCA into a memory address location
while performing another operation,
it is at times more efficient to
just push it onto the stack. Using
the stack is more efficient because
it takes fewer bytes to implement
than a memory store and read. How-
ever, it is a sequential read-write
operation rather than random access
as with normal memory store. This
means that each byte has to be
read in a last-in-first-out basis.
Random access memory usage, however,
means that any byte can be accessed
at any time regardless of its posi-
tion. The Push Instruction (PSHA)
causes the contents of the indicated
accumulator (A in this example) to
be stored on the stack, in memory,
at the location indicated by the
Stack Pointer. The Stack Pointer
is automatically decremented by
one following the storage operation
and is "pointing" to the next empty
stack location. The Pull instruc-
tion (PULA or PULB) causes the last
byte stacked to be loaded into the
appropriate accumulator. The Stack
Pointer is automatically incremented
by one just prior to the data trans-
fer so that it will point to the
last byte stacked rather than the
next empty location.

Another useful implementation
of the Stack is in subroutine link-
age. A subroutine is a program
within a program. Say, for example,
that you had a long program which
performed many operations. One of
the things that it has to do fre-
quently is multiply two numbers
together. What we can do is write
a small program (subroutine) that
multiplies two numbers, and go to
the subroutine at every place in
the program where necessary.

The stack is used to store the
current address of the Program
Counter every time the program goes
to the subroutine. This is how the
MPU keeps track of where it left off
in the-main program. When the sub-
routine is finished, the Program
Counter address is pulled off the
Stack and reloaded into the Program
Counter. The main program then picks
up where it left off before having
called the subroutine.

-continued

COMPUTER NOTES - JULY- 117b PAGE N I N E T E E N

My Computer Just Stares -continued

In this way, the multiplication
routine does not have to be written
into the program many times, but
instead just once. This can save
much memory space, which can be
critical when writing long programs.

In the next issue of Computer
Notes we'll see how all of these
parts of the MPU, along with the
memory and I/O work together to
run the programs that are entered
into the computer.

References:

Primer on Microprocessors, Electronics
Products Magazine, Jan. 20, 1975,
p. 25-32.

M6S00 Microprocessor Programming
Manual, Motorola, Inc., 1975.

Aitair 680 Programming Manual,
MITS, Inc., 1976

Figure 2 courtesy of Motorola, Inc.

m i c r o p r o c e s s i n g

unit

i npu t /ou tpu t
dev ices

Figure 1 Microcomputer System Block Diagram

Aitair 8800b
-continued from page 21

MISCELLANEOUS

18-Slot Motherboard

The four-sTot expander cards in
the Aitair 8800 have been replaced
by a single piece 18-slot mother-
board. The 18-slot motherboard con-
tains 10P solder lands which comprise
the 100 pin bus. The need for ex-
pander board wiring has been com-
pletely eliminated. Assembled units
may be ordered with 6, 12 or 18 edge
connectors.

Single Step/Slow

Single Step: The 8800b has
provisions for selecting one of two
modes for the single step operation
by means of a patching jumper. In
the first mode a single machine
cycle will be executed each time the
switch is activated. The second
mode allows a complete instruction
cycle to be executed.

Slow: The SLOW mode on the
8800b will operate in the same manner
as single step as far as the mode is
concerned. The speed of the slow
mode is selectable by patching
jumpers for three different speeds.

Data LEDs

The front panel data LEDs are
driven (in the STOP mode) by the
Data Out lines (DO0--DO7). (In the
Aitair 8800 they are driven by the
Data Input lines, DI0--DI7.) If
single step is operated in the
single machine cycle mode, the cor-
rect data will be displayed on the
LEDs during memory write and output
machine cycles.

jn{ t } N j z) v) c) CONDtTtCM COOES REGtSTER

Figure 2 Programming Model of M6800

RESET Switch

The RESET switch on the front
panel has provisions for wiring to
the front panel switch enable line
(instead of to ground). If this is
done, the machine can be RESET only
in the STOP mode.

Control PROM

The front panel control PROM
(1702A) has been divided into 16
sectors, each 16 bytes long. The

even addresses within any sector are
used to control the front panel cir-
cuit. Since the last address must
contain a stop code for the PROM Ad-
dress Counter, there are 7 bytes
available in each sector for machine
code. This means that there is some
flexibility in redefining the front
panel switch functions (for special
applications) by re-programming the
control RPOM. The functions are
constrained by the fact that there
are only 7 bytes of machine code
available to execute them.

PRICES
Aitair 8800b Computer Kit

(Kit includes 2 edge connectors
and card guide sets)

Assembled Aitair 8800b Computer
(With 6 edge connectors)
(With 12 edge connectors)
(With 18 edge connectors)

8800b-U (kit only)*
The 8800b-U will update the 8800
te the 8800b. The only items not
included in this package that are
included in the 8800b are the
switches, LEDs, case and motherboard.

8800b-SL (kit only)*
The 8800b-SL is a further update to
the 8800b-U and contains the
switches and LEDs for the 8800, to
duplicate the 8800b switches and LEDs

8800b-PS (kit only)*
The 8800b-PS is for those desiring
the power supply modification but
not the 8800b-U in its entirety.

*(add $3 for postage and handling)

840.00

1,100.00
1,175.00
1,250.00

489.00

78.00

147.00

PAGE TUENTY-FOUR COMPUTER NOTES - JULY, M 7 L

"Learning to use a computer shouM be rougMy equiva-
!ent to beaming how to make spaghetti"

Personal Computing is the new people/computer
magazine that understands this concept. We believe that
if you are bright enough to:

1. Brown % pound of hamburger in a iarge saucepan.
Add celery, 1 dove crushed garlic . . .

and etcetera, then you are probably bright enough to
learn how to make practical use of your own, persona!
computer. You are probably bright enough to p)ay games
with it or make use of it for your own business or educa-
tions! purposes.

Personal Computing looks at the computer as a
handy, powerful mind tool. One that expands your ability
to keep track of the many compl icated aspects of
a modern society.

The first issue of Persona! Computing includes the
following articles:

1. Part one of Spaghetti BASIC. Easy to learn course
on programming a microcomputer in the simplest of
computer languages, BASIC.

2. Ten Steps to Becoming a Computer Hobbyist. Tells
you about the phenomena of this newest breed of elec-
tronic tinkerer. And if you'd like to join the fun, we'll try
to guide you in the right direction.

3. The Equaiizer. Zany feature by Nets Winkless II!
that views the personal computer as "the most powerful
equalizer since the Colt 45 in the old frontier!'

Personal Computing wil! provide educationai articles

on basic computer jargon, computer architecture, and

computer programming. These articles wi)i be written in

easy to understand language for the beginner and they

wilt serve as a reference for people already knowledge-

able in the field.

Another regular feature on Persona! Computing will
be a section on "Future Computing!' Also, each issue
wit! include a poster sized, four color computer graphic.

Persona! Computing is a new kind of magazine, com-
pletely different from existing hobbyist publications.

Benwill Publishing, the publishers of Digita! Design
and Minicomputer News, invites you to take advantage
of a special, charter subscription offer. For a limited time
only, you can subscribe to the first year of Persona! Com-
puting for only $6. This includes a free copy of the initiai,
October-November kickoff issue, plus the six bi-monthly
issues scheduled for 1977.

To subscribe to Persona! Computing, fill out this coupon

and return it with your check to: '

j Personal Computing
j Benwill Publishing Corp., 167 Corey Road, Brookiine, ^
i MA 02146, USA. {

! NAME j

! ADDRESS

t CITY.— STATE 6 ZIP '

I I
' Note: $6 special charter subscription rates apply to U.S. '
! only. Mexico and Canada, $12 surface mail and $16 air- i

I mail. Foreign airmail: $24. Charter rates increased $2 j
j after September, 1976.

